SEMESTER S6 RENEWABLE ENERGY SYSTEMS

Course Code	ОЕЕЕТ613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To understand energy scenario, energy sources and their utilization
- **2.** To explore society's present needs and future energy demands
- **3.** To study the principles of renewable energy conversion systems
- **4.** To be exposed to energy conservation methods

SYLLABUS

Module No.	Syllabus Description			
	Introduction: Principles of renewable energy; energy and sustainable			
	development, fundamentals and social implications. Worldwide renewable			
	energy availability, renewable energy availability in India, types of			
	renewable energy.			
1	Wind Energy: Properties of wind, availability of wind energy in India, wind			
	velocity and power from wind (numerical problems); major problems			
	associated with wind power, Basic components of wind energy conversion			
	system (WECS); Classification of WECS- Horizontal axis- single, double			
	and multi-blade system. Vertical axis - Savonius and Darrieus types.			
	Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation			
	on horizontal and inclined surfaces; Solar radiation Measurements -			
2	Pyrheliometers, Pyranometer, Sunshine Recorder. Solar Thermal systems:			
_	concentrating and non-concentrating collectors - Flat plate collectors; Solar	9		
	tower electric power plant. Photovoltaic system for electric power generation			

	- Classification of PV system - Principle of Solar cell, advantages,	
	disadvantages and applications of solar photovoltaic system.	
	Biomass Energy: Introduction; Principle of biomass energy generation -	
	Biofuels; Biomass Resources; Biomass conversion technologies-fixed	
	dome type biogas plant; Urban waste to energy conversion; Biomass	
3	gasification (Downdraft).	
	Tidal Power: Tides and waves as energy suppliers and their mechanics;	9
	fundamental characteristics of tidal power, classification of tidal power	
	plants - harnessing tidal energy, advantages and limitations.	
	Ocean Thermal Energy Conversion: Principle of working, classification,	
	OTEC power stations in the world, environmental impacts associated with	
	OTEC.	
	Introduction to geothermal energy	
4	Green Energy: Introduction, Fuel cells: Classification of fuel cells –	
	Hydrogen energy; Operating principles, Zero-energy Concepts. Benefits of	9
	hydrogen energy, hydrogen production technologies (electrolysis method	
	only), hydrogen energy storage, applications of hydrogen energy, problem	
1	associated with hydrogen energy.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Describe the environmental aspects of renewable energy resources in comparison with various conventional energy systems, their prospects and limitations.	K1
CO2	Understand the concepts of wind energy.	K1
CO3	Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation.	К2
CO4	Understand the concept of biomass energy resources and conversion principles of tidal energy.	К2
CO5	Acquire the basic knowledge of ocean thermal energy conversion. Understand the principle of green energy and hydrogen energy.	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2
CO5	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Non-conventional energy sources	G. D. Rai	Khanna	4 th edition 2023					
2	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	2017					
3	Non-Conventional Energy Resources	Sawhney G. S.	PHI Learning	2012					
4	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	Pearson 2017					