SEMESTER S7

POWER QUALITY

Course Code	PEEET751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	PE - Theory

Course Objectives:

1. To introduce the fundamental concepts of power quality, different power quality issues and its mitigation methods.

SYLLABUS

Module No.	Syllabus Description					
	Power quality phenomenon - Sources and effects of power quality					
	problems, Need for concern of Power quality					
	Types of power quality disturbances -Transients - classification and					
	origin, Short duration voltage variation - interruption, sag, swell, Long					
1	duration voltage variation, voltage unbalance, waveform distortion -	9				
	notching, harmonics and voltage flicker					
	Power Quality issues of Grid connected Renewable Energy Systems -					
	operating conflicts					
	Harmonics - mechanism of harmonic generation, Triplen harmonics,					
	Harmonic sources – switching devices, arcing devices and saturable					
	devices, Effects of harmonics on power system equipment and loads -					
2	transformers, capacitor banks, motors and telecommunication systems,	9				
	Effect of triplen harmonics on neutral current, line and phase voltages.					
	Harmonic analysis using Fourier series and Fourier transforms – simple					
	numerical problems					
	Harmonic indices (CF, DF, THD, TDD, TIF, DIN, C – message weights),	9				
3	Displacement and total power factor Overview of power quality standards :					
	IEEE 519, IEEE 1433 and IEC 61000					
	Power quality Monitoring: Objectives and measurement issues, different monitoring instruments – Power quality analyzer, harmonic spectrum analyzer, flicker meters					

	Mitigation of Power quality problems - Harmonic elimination - Design					
	simple problems and analysis of passive filters to reduce harmonic distortion					
	- demerits of passive filters - description of active filters - shunt, series,					
	hybrid filters, sag and swell correction using DVR Power quality					
4	conditioners - DSTATCOM and UPQC - Configuration and working					
	Power factor correction - Single phase active power factor converter -					
	circuit schematic and control block diagram					
	Grounding and wiring- reasons for grounding - wiring and grounding					
	problems - solutions to these problems					

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	CO1 Identify the sources and effects of power quality problems.				
CO2	CO2 Apply Fourier concepts for harmonic analysis.				
CO3	CO3 Explain the important aspects of power quality monitoring.				
CO4	Examine power quality mitigation techniques.	K2			
CO5	Discuss power quality issues in grid connected renewable energy systems.	К2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2		1				2
CO2	3	3										2
CO3	3	3			3							2
CO4	3	3	2					1				2
CO5	3	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s							
1	Electrical Power System Quality	R. C. Dugan, M. F. Me Granaghen, H. W. Beaty	McGraw-Hill	2012					
2	Power Quality	C. Sankaran	CRC Press	2002					
3	Understanding Power Quality Problems	Math H. Bollen	Wiley-IEEE Press	1999					
4	Power Quality problems and mitigation techniques	Bhim Singh, Ambrish Chandra and Kamal Al- Haddad	John Wiley and Sons Ltd	2015					