SEMESTER S5
MICROPROCESSORS AND EMBEDDED SYSTEMS

Course Code	PBEET504	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBEET304, PBEET404, GBEST204	Course Type	Theory

Course Objectives:

1. This course aims to design and implement Embedded Systems using latest microprocessors / Microcontroller based boards.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to microprocessors- Features and Architecture of 8085-	
	Registers of 8085 - Flags - 8085 Pin diagram- Pins, Signals and functions	
	- Assembly language programming- Basic Instruction set to write Simple	
1	programs - Arithmetic, Logical, Branching instructions, Opcodes, hand	
1	coding, Programs involving 8 and 16bit Addition, Subtraction, Memory	12
	Reading and writing, Sorting - Addressing modes-Classification of	
	instructions.	
	Stack and Subroutines – CALL and RETURN instructions – Timing and	
	control - Machine cycles, instruction cycle and T states - fetch and	
2	execute cycles -Timing diagram for instructions- Delay subroutines -	10
	Interrupts- Interrupt service Routines- Interfacing ADC and DAC	10
	Introduction to Embedded Systems-Application domain, features and	
3	characteristics, Microprocessors and Micro controllers- Choice and	12
	suitability for applications	

	Introduction to Arduino UNO(8bit)- Hardware fundamentals of	
	ATmega328Pmicrocontroller based Board. Arduino Architecture, Pin	
	diagram and functions of Pins- Overview of main features such as I/O	
	Ports, Timers, interrupts, PWM, ADC (Introduction only). Introduction	
	to Arduino IDE- Arduino Libraries, Steps for creating an Arduino	
	program- Arduino Sketch Structure and Flow- Setup and loop functions.	
	Programming in Embedded C. Data types- operators, conditional	
	statements- Loops, Arrays and functions- Built in functions in Arduino -	
	Program to blink an LED and its control., Interfacing LCD, Seven	
	Segment LED, switch Interface, Binary counter Working with LED	
	Controlled by Switch/ Potentiometer, Interfacing with Relays, Buzzer,	
	Working with Basic sensors and actuators using Arduino.	
	working with basic sensors and actuators using Ardumo.	
	ARM (Advanced RISC Machines) based Embedded System Design:	
	Classification of Microprocessors based on the word length, architecture	
	and Instruction Set- Reduced Instruction Set Computer (RISC) and	
	Complex Instruction Set Computer (CISC). Features and characteristics	
	Introduction to Arduino due(32bit)- micro controller board (based on	
4	the atmel sam3x arm cortex- m3 cpu)- Features, General Specifications	10
	Overview, General architecture- Features OF Microcontroller,	10
	INPUTS,OUTPUTS, Ratings, Functional Overview, Pinout-	
	familiarization of the ports of the board. Programming Basics- Arduino	
	IDE-Use of Timer, Interfacing of ADC and DAC -PWM implementation	
	- Introduction to Arduino Cloud Editor	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B		Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out of	
•	Total of 8 Questions, each		which 1 question should be answered.	
	carrying 3 marks	•	• Each question can have a maximum of 3 sub divisions.	
		(4x9 = 36 marks)		
	(8x3 = 24marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the architecture of 8085 microprocessor and 8085 Assembly language programming.	К2
CO2	Understand the need for interrupts, Subroutines, timing diagram of 8085 microprocessor and interfacing	К2
CO3	Understand and gain the basic idea about the embedded system and selection of processors.	К2
CO4	Able to gain working level knowledge about a Arduino Uno based system architecture and Arduino IDE	К2
CO5	Write Programs using Embedded C and implement an application using Arduino UNO board.	К3
CO6	Understand the RISC Architecture and Apply the knowledge for solving the real life problems using ARM - Arduino DUE board based embedded system.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2	3	3	2	1						
CO3	3	2	2	2	2							
CO4	3	2										1
CO5	3	2	3	2	1	1						1
CO6	3	2	3	2	1	1						1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
	Fundamentals of Microprocessor	Ram,	Rai Publications (P)	
1	and Micro controllers	B.DHANPAT	LtdNew Delhi	
2	Microprocessor, Architecture, Programming and Applications	Ramesh Gaonkar	Penram International Publishing;	Sixth edition, 2014.
3	Arduino Cookbook"	Michael Margolis,	O'Reilly Media, Inc.	1st Edition
4	Microprocessor Theory and Application	Rafiquzzaman	PHI Learning	First Edition

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Arduino-Based Embedded Systems	Rajesh Singh, Anita Gehlot,Bhupendra Singh, and Sushabhan Choudhury					
2	Arduino for beginners: Essential Skills Every Maker Needs"	John Baichtal	Person Education				
3	Arduino Made Simple	Ashwin Pajankar					
4	Embedded C, Pont	Michael J					
5	Programming Arduino Next Steps: Going Further with Sketches	Simon Monk					
6	Arduino: A Technical Reference by	J.M. Hughes	O'Reilly Media, Inc. ISBN: 9781491934494				
7	Arduino Workshop: A Hands-On Introduction with 65 Projects	John <i>Boxall</i>					
8	Exploring Arduino: Tools and Techniques for Engineering Wizardry	Jeremy Blum WILEY					

	Video Links (NPTEL, SWAYAM)						
Module No. Link ID							
1	https://onlinecourses.nptel.ac.in/noc20_ee42/preview						
2	https://onlinecourses.nptel.ac.in/noc20_ee42/preview						
3	https://onlinecourses.nptel.ac.in/noc20_ee42/preview https://www.arduino.cc/en/Tutorial/HomePage						
4	https://onlinecourses.nptel.ac.in/noc20_ee42/preview https://docs.arduino.cc/hardware/due/						