SEMESTER S5
MICROPROCESSORS AND EMBEDDED SYSTEMS LAB

Course Code	PCEEL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Achieve proficiency in 8051 microcontroller assembly language and embedded C programming.
- 2. Acquire practical experience with Arduino.

Expt. No.	Experiments
1	ALP programming for (a) Data transfer: Block data movement, exchanging data, sorting, finding largest element in an array. (b) Arithmetic operations: Addition, Subtraction, Multiplication and Division. Comparing square and cube of 16 bit numbers.
2	ALP programming for the implementation of counters: Hex up and down counters, BCD up/down counters.
3	(a)ALP programming for implementing Boolean and logical instructions: bit manipulation.(b)ALP programming for implementing conditional call and return instructions: Toggle the bits of port 1 by sending the values of 55H and AAH continuously, Factorial of a number.
4	ALP program for Generation of delay.
5	C program for stepper motor control.

6	C program for DC motor direction and speed control using PWM.
7	C program for alphanumerical LCD panel/keyboard interface.
8	C program for ADC interfacing.
9	Demo experiment using 8051 Microcontroller programming. ALP programming for implementation code conversion- BCD to ASCII, ASCII to BCD, ASCII to Decimal, Decimal to ASCII, Hexadecimal to Decimal and Decimal to Hexadecimal
10	a)Familiarization of Aurdino IDE. b)LED blinking with different ON/OFF delay timings with (i) inbuilt LED (ii) externally interfaced LED.
11	Arduino based voltage measurement of 12 V solar PV module /12 V battery and displaying the measured value using 12C LCD display
12	Demo experiments on Arduino / Raspberry Pi to upload /retrieve temperature and humidity data to thing speak cloud.
13	Arduino based DC current measurement using Hall effect current sensor displaying the value using 12C LCD module.
14	Directional control of the DC motor using Arduino.
15	Interfacing of the relay with Arduino.
16	Building intrusion detection system with Arduino and Ultrasonic sensor.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop and execute ALP programs for solving arithmetic and logical problems using microcontroller	К3
CO2	Develop embedded C programming using instruction sets of 8051	К3
CO3	Examine circuits for interfacing processor with various peripheral devices	K4
CO4	Design a microcontroller based system with the help of various interfacing devices	K6
CO5	Design an Arduino based system with the help of various interfacing devices	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	The 8051 microcontroller	Kenneth Ayala	Cengage Learning	The 8051 microcontroller					
2	Microprocessors and Microcontrollers	R. LylaB.Das	Pearson Education	Microprocessors and Microcontrollers					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	The 8051 Microcontroller	I. ScottMacKenzie,Raphael CW.Phan								
2	The 8051 microcontroller and embedded systems	Muhammad Ali Mazidi	Pearson Education							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted