SEMESTER S2 # MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 2 ### (Common to Group B & C) | Course Code | GYMAT201 | CIE Marks | 40 | |------------------------------------|--|-------------|----------------| | Teaching Hours/Week
(L: T:P: R) | 3:0:0:0 | ESE Marks | 60 | | Credits | 3 | Exam Hours | 2 Hrs. 30 Min. | | Prerequisites (if any) | Basic knowledge in single variable calculus. | Course Type | Theory | #### **Course Objectives:** 1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts. ### **SYLLABUS** | Module
No. | Syllabus Description | | | | |---------------|--|---|--|--| | 1 | Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8) | 9 | | | | 2 | Double integrals, Reversing the order of integration in double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, Finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6) | 9 | |---|---|---| | 3 | Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3) | 9 | | 4 | Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z = g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8) | 9 | ## Course Assessment Method (CIE: 40 marks, ESE: 60 marks) ### **Continuous Internal Evaluation Marks (CIE):** | Attendance | Assignment/
Microproject | Internal
Examination-1
(Written) | Internal
Examination- 2
(Written) | Total | |------------|-----------------------------|--|--|-------| | 5 | 15 | 10 | 10 | 40 | ### **End Semester Examination Marks (ESE)** In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions | Part A | Part A Part B | | |------------------------------|---|--| | 2 Questions from each | • Each question carries 9 marks. | | | module. | Two questions will be given from each module, out | | | • Total of 8 Questions, each | each of which 1 question should be answered. | | | carrying 3 marks | • Each question can have a maximum of 3 sub | | | | divisions. | | | (8x3 =24marks) | (4x9 = 36 marks) | | ### **Course Outcomes (COs)** At the end of the course students should be able to: | | Course Outcome | | | |-----|--|----|--| | CO1 | Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems. | К3 | | | CO2 | Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes. | К3 | | | СОЗ | Compute the derivatives and line integrals of vector functions and to learn their applications. | К3 | | | CO4 | Apply the concepts of surface and volume integrals and to learn their inter-relations and applications. | К3 | | Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create ## **CO-PO Mapping Table:** | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | 2 | | CO2 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | 2 | | CO3 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | 2 | | CO4 | 3 | 3 | - | 2 | - | - | - | - | - | - | - | 2 | | | | Text Books | | | |-----------|-------------------|--------------------------------|--------------------------|--------------------------------| | Sl.
No | Title of the Book | Name of the Author/s | Name of the
Publisher | Edition
and Year | | 1 | Calculus | H. Anton, I. Biven,
S.Davis | Wiley | 12 th edition, 2024 | | | | Reference Books | | | |-----------|--|--|--------------------------|-----------------------------------| | Sl.
No | Title of the Book | Name of the Author/s | Name of the
Publisher | Edition and Year | | 1 | Thomas' Calculus | Maurice D. Weir, Joel
Hass, Christopher Heil,
Przemyslaw Bogacki | Pearson | 15 th edition, 2023 | | 2 | Essential Calculus | J. Stewart | Cengage | 2 nd edition,
2017 | | 3 | Advanced Engineering Mathematics | Erwin Kreyszig | John Wiley & Sons | 10 th edition, 2016 | | 4 | Bird's Higher Engineering
Mathematics | John Bird | Taylor & Francis | 9 th edition,
2021 | | 5 | Higher Engineering
Mathematics | B. V. Ramana | McGraw-Hill
Education | 39 th edition,
2023 | | | Video Links (NPTEL, SWAYAM) | | | | | |---------------|---------------------------------------|--|--|--|--| | Module
No. | Link ID | | | | | | 1 | https://nptel.ac.in/courses/111107108 | | | | | | 2 | https://nptel.ac.in/courses/111107108 | | | | | | 3 | https://nptel.ac.in/courses/111107108 | | | | | | 4 | https://nptel.ac.in/courses/111107108 | | | | |