#### **SEMESTER S3**

# INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

| Course Code                     | GNEST305 | CIE Marks   | 40             |
|---------------------------------|----------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:1:0:0  | ESE Marks   | 60             |
| Credits                         | 4        | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | None     | Course Type | Theory         |

#### **Course Objectives:**

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- **2.** Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

#### **SYLLABUS**

| Module<br>No. | Syllabus Description                                                          | Contact<br>Hours |
|---------------|-------------------------------------------------------------------------------|------------------|
|               | Introduction to AI and Machine Learning: Basics of Machine Learning -         |                  |
|               | types of Machine Learning systems-challenges in ML- Supervised learning       |                  |
|               | model example- regression models- Classification model example- Logistic      |                  |
| 1             | regression-unsupervised model example- K-means clustering. Artificial         |                  |
|               | Neural Network- Perceptron- Universal Approximation Theorem (statement        | 11               |
|               | only)- Multi-Layer Perceptron- Deep Neural Network- demonstration of          |                  |
|               | regression and classification problems using MLP.(Text-2)                     |                  |
|               | Mathematical Foundations of AI and Data science: Role of linear algebra       |                  |
| _             | in Data representation and analysis - Matrix decomposition- Singular Value    |                  |
| 2             | Decomposition (SVD)- Spectral decomposition- Dimensionality reduction         | 11               |
|               | technique-Principal Component Analysis (PCA). (Text-1)                        | 11               |
| 2             | Applied Probability and Statistics for AI and Data Science: Basics of         |                  |
| 3             | probability-random variables and statistical measures - rules in probability- | 11               |

|   | Bayes theorem and its applications- statistical estimation-Maximum          |    |  |  |
|---|-----------------------------------------------------------------------------|----|--|--|
|   | Likelihood Estimator (MLE) - statistical summaries- Correlation analysis-   |    |  |  |
|   | linear correlation (direct problems only)- regression analysis- linear      |    |  |  |
|   | regression (using least square method) (Text book 4)                        |    |  |  |
|   | Basics of Data Science: Benefits of data science-use of statistics and      |    |  |  |
|   | Machine Learning in Data Science- data science process - applications of    |    |  |  |
|   | Machine Learning in Data Science- modelling process- demonstration of ML    |    |  |  |
| 4 | applications in data science- Big Data and Data Science. (For visualization |    |  |  |
| 4 | the software tools like Tableau, PowerBI, R or Python can be used. For      | 11 |  |  |
|   | Machine Learning implementation, Python, MATLAB or R can be used.)          |    |  |  |
|   | (Text book-5)                                                               |    |  |  |
|   |                                                                             |    |  |  |

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

#### **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written ) | Total |
|------------|-----------------------------|----------------------------------------|------------------------------------------|-------|
| 5          | 15                          | 10                                     | 10                                       | 40    |

#### **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| • 2 Questions from each      | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           | 60    |
| carrying 3 marks             | • Each question can have a maximum of 3 sub       | 00    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                                                                                                         | Bloom's<br>Knowledge<br>Level (KL) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for engineering applications.                               | К3                                 |
| CO2 | Apply advanced mathematical concepts such as matrix operations, singular values, and principal component analysis to analyze and solve engineering problems.                           | К3                                 |
| СОЗ | Analyze and interpret data using statistical methods including descriptive statistics, correlation, and regression analysis to derive meaningful insights and make informed decisions. | К3                                 |
| CO4 | Integrate statistical approaches and machine learning techniques to ensure practically feasible solutions in engineering contexts.                                                     | К3                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO2 | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO3 | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO4 | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |
| CO5 | 3   | 3   | 3   | 3   |     |     |     |     |     |      |      |      |

|        |                                                                                    | Text Books                                                       |                              |                                  |
|--------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|----------------------------------|
| Sl. No | Title of the Book                                                                  | Name of the<br>Author/s                                          | Name of the<br>Publisher     | Edition and Year                 |
| 1      | Introduction to Linear Algebra                                                     | Gilbert Strang                                                   | Wellesley-Cambridge<br>Press | 6 <sup>th</sup> edition,<br>2023 |
| 2      | Hands-on machine learning with<br>Scikit-Learn, Keras, and<br>TensorFlow           | Aurélien Géron                                                   | O'Reilly Media, Inc.         | 2 <sup>nd</sup> edition,202      |
| 3      | Mathematics for machine learning                                                   | Deisenroth, Marc<br>Peter, A. Aldo Faisal,<br>and Cheng Soon Ong | Cambridge University Press   | 1 <sup>st</sup> edition.<br>2020 |
| 4      | Fundamentals of mathematical statistics                                            | Gupta, S. C., and V.<br>K. Kapoor                                | Sultan Chand & Sons          | 9 <sup>th</sup> edition,<br>2020 |
| 5      | Introducing data science: big data, machine learning, and more, using Python tools | Cielen, Davy, and<br>Arno Meysman                                | Simon and Schuster           | 1 <sup>st</sup> edition,<br>2016 |

|           |                                                                             | Reference Boo                                       | oks                                                                                        |                               |
|-----------|-----------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------|
| Sl.<br>No | Title of the Book                                                           | Name of the<br>Author/s                             | Name of the<br>Publisher                                                                   | Edition and Year              |
| 1         | Data science: concepts and practice                                         | Kotu, Vijay,<br>and Bala<br>Deshpande               | Morgan Kaufmann                                                                            | 2 <sup>nd</sup> edition, 2018 |
| 2         | Probability and Statistics for Data Science                                 | Carlos<br>Fernandez-<br>Granda                      | Center for Data<br>Science in NYU                                                          | 1 <sup>st</sup> edition, 2017 |
| 3         | Foundations of Data Science                                                 | Avrim Blum,<br>John Hopcroft,<br>and Ravi<br>Kannan | Cambridge<br>University Press                                                              | 1 <sup>st</sup> edition, 2020 |
| 4         | Statistics For Data Science                                                 | James D.<br>Miller                                  | Packt Publishing                                                                           | 1st edition, 2019             |
| 5         | Probability and Statistics -<br>The Science of Uncertainty                  | Michael J.<br>Evans and<br>Jeffrey S.<br>Rosenthal  | University of<br>Toronto                                                                   | 1 <sup>st</sup> edition, 2009 |
| 6         | An Introduction to the Science of Statistics: From Theory to Implementation | Joseph C.<br>Watkins                                | chrome-<br>extension://efaidnb<br>mnnnibpcajpcglclef<br>indmkaj/https://ww<br>w.math.arizo | Preliminary<br>Edition.       |

|               | Video Links (NPTEL, SWAYAM)                                                                                                                                               |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module<br>No. | Link ID                                                                                                                                                                   |  |  |
| 1             | https://archive.nptel.ac.in/courses/106/106/106106198/                                                                                                                    |  |  |
| 2             | https://archive.nptel.ac.in/courses/106/106/106106198/<br>https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular-value-decomposition/ |  |  |
| 3             | https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19-video/                                                                      |  |  |
| 4             | https://archive.nptel.ac.in/courses/106/106/106106198/                                                                                                                    |  |  |