SEMESTER S6 DIGITAL PROTECTION OF POWER SYSTEMS

Course Code	PEEET631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET501, PBEET604	Course Type	Theory

Course Objectives:

1. To deliver fundamental concepts to design various electronic circuits to implement various relaying functions.

SYLLABUS

Module No.	Syllabus Description					
	Introduction: Need for protective systems, Zones of protection, Current					
	transformers and voltage transformers (Electromagnetic and Capacitive					
	voltage transformers), Principle of operation of magneto optic CT/ PT,					
	effect on relaying philosophy.	9				
	Relays: Over current relays - time-current characteristics of over current					
1	relays: definite time over current relays, inverse Definite Minimum time -					
	directional over current relays, current setting and time setting - Numerical					
	Problems - Differential relays: Operating and restraining characteristics,					
	types of differential relays, Distance relays: impedance relays, reactance					
	relays, mho relays (basic principles and characteristics only)					
	Protection of Transmission Lines: Schemes of distance protection,					
	Differential line protection, Phase comparison line protection.					
	Protection of Bus-bar, Transformer and Generator & Motor: Types of					
2	faults, differential protection: High impedance and low impedance					
	differential protection schemes, harmonic restraint relay, Restricted Earth					
	Fault Protection, frame leakage protection, stator and rotor protection					
	against various types of faults.					
		1				

	Digital (Numerical) Relays: Basic Components of numerical Relays with	
	block diagram, Processing Unit, Human machine Interface, Principle of	
	operation, Comparison of numerical relays with electromechanical and	
	static relays, Advantages of numerical relays - communication in protective	
	relays (IEC 61850), Information handling with substation automation	9
3	system (SAS) Signal Conditioning Subsystems: Surge Protection Circuits,	9
	Anti-aliasing filter, Conversion Subsystem, The Sampling Theorem,	
	aliasing, Sample and Hold Circuit, Concept of analog to digital and digital	
	to analog conversion, Idea of sliding window concept, Fourier, Discrete	
	and fast Fourier transforms	
	Signal processing techniques: Sinusoidal wave based algorithms, Fourier	
	Analysis based algorithms (half cycle and full cycle), Least squares based	
	algorithm. Digital filters - Fundamentals of Infinite Impulse Response	
	Filters, Finite Impulse Response filters, Filters with sine and cosine	9
	windows.	
4	Wide Area Protection and Measurement: Phasor Measurement Units,	
	concept of synchronized sampling, Definition of wide-area protection,	
	Architectures of wide-area protection, concept of Adaptive relaying,	
	advantages of adaptive relaying and its application, Adaptive Differential	
	protective scheme.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
661	Identify the relay protection scheme suitable for overcurrent,	К3		
CO1	differential and distance protection.			
	Develop the protection scheme for bus bars, transformers, generators,	К3		
CO2	motors and distribution systems using appropriate protective relays			
CO3	Illustrate the operation of a numerical relay.	К2		
	Explain signal processing methods and algorithms in digital	K2		
CO4	protection			
CO5	Infer emerging protection schemes in power systems	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2									
CO2	3		2									
CO3	3		2									
CO4	3		2									
CO5	3		2									

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Digital Protection of Power System	A. T. Johns and S. K. Salman	Peter Peregrinus Ltd, UK	1995
2	Computer Relaying for Power Systems	A. G. Phadke and James S. Thorpe	Research study press Ltd, John Wiley & Sons, Taunton, UK	1988
3	Power System Protection and Switchgear	Badri Ram and D. N. Viswakarma	Tata McGraw Hill Education, Pvt Edition	2011
4	Digital Signal Processing in Power System Protection and Control	Waldemar Rebizant	Springer Publication	2008

	Video Links (NPTEL, SWAYAM)				
Sl No	Sl No Link ID				
1	https://archive.nptel.ac.in/courses/117/107/117107148/ (NPTEL lecture IIT Roorkee)				