SEMESTER S4

DIGITAL ELECTRONICS

Course Code	PBEET404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Explain the various number systems, Digital logic gates and Boolean expressions
- 2. Design and implement different types of combinational and sequential logic circuits
- 3. Design and implement digital circuits using Hardware Descriptive Language.

SYLLABUS

Module	Syllabus Description			
No.				
1	Number Systems and Codes – binary, octal and hexadecimal – conversions – ASCII code, Excess – 3 code, Gray code, BCD code Signed numbers – 1's complement and 2's complement – addition and subtraction Basic logic gates – universal gates – TTL – CMOS – Internal diagram of TTL NAND gate and CMOS NOR gate – comparison of CMOS and TTL	9		
	performance. Boolean laws and theorems – Sum of products and Product of sums forms – K map representation and simplification (up to four variables) – pairs, quads, octets – don't care conditions.			
	Combinational circuits – half adder and full adder, half subtractor and full subtractor – 4-bit parallel binary adder/subtractor.			
2	Comparators – parity generators and checkers – encoders – decoders – BCD to seven segment decoder. Multiplexers – implementation of boolean expressions using multiplexers – demultiplexers.	9		

	Flip-Flops - SR, JK, D and T flip-flops - characteristic table and			
	excitation table – JK Master Slave Flip-flop – Conversion of flip- flops –			
3	SR to JK and JK to SR only.			
	Up/Down counters – asynchronous counters – mod-6 and mod-10	10		
	counters.	10		
	Synchronous counters - design of synchronous counters - Ring counter			
	- Johnson Counter.			
	Shift registers - SISO, SIPO, PISO, PIPO.			
	State Machines – state transition diagram – Moore and Mealy			
	machines.			
4	Digital to Analog converter –weighted resistor type, R-2R Ladder type.			
	Analog to Digital Converter – flash type, successive	8		
	approximation type.			
	Introduction to Verilog - Implementation of AND, OR, half adder and			
	full adder.			

Suggestion on Project Topics

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which I question should be answered.	40
Total of 8 Questions, each	• Each question can have a maximum of 2 sub	
carrying 2 marks	divisions.	
• (8x2 =16 marks)	• Each question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify various number systems, binary codes and formulate digital functions using Boolean algebra.	K2
CO2	Design combinational logic circuits.	К3
CO3	Design sequential logic circuits.	К3
CO4	Describe the operation of various analog to digital and digital to analog conversion circuits.	К2
CO5	Explain the basic concepts of programming using Verilog HDL	K2
CO6	Design and realize medium complexity practical digital hardware circuits.	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	2		2	2			2	2			3
CO3	3	2		2	2			2	2			3
CO4	3	2										3
CO5	3	2		2	2			2	2			3
CO6	3	3	3	3	3	2	2	3	3		2	3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Fundamentals	Floyd T.L	Pearson Education	11/e, 2017			
2	Digital Principles and Applications	Albert Paul Malvino & Donald P. Leach	Mc-GRAW Hill International Editions	4/e, 2018			
3	Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog	M. Morris Mano, Michael D. Ciletti	Pearson Education	6/e, 2018			
4	Digital Integrated Electronics	Herbert Taub and Donald Schilling	McGraw Hill Education	2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Digital Logic with Verilog Design	Stephen Brown	McGraw Hill Education	2 nd Edition				
2	Fundamental of Digital Circuits	A Anand Kumar	Prentice Hall	4/e, 2023				
3	Digital Circuits and Design	S. Salivahanan	Oxford University Press	2018				
4	Digital Design Verilog HDL and Fundamentals	Joseph Cavanagh	CRC Press	1 st Edition, 2008				

	Video Links (NPTEL, SWAYAM)
Module	Link ID
No.	
1	https://archive.nptel.ac.in/courses/108/105/108105132/
	https://archive.nptel.ac.in/courses/18/106/108106177/
2	https://archive.nptel.ac.in/courses/108/105/108105132/
	https://archive.nptel.ac.in/courses/108/106/108106177/
3	https://archive.nptel.ac.in/courses/108/105/108105132/
	https://archive.nptel.ac.in/courses/108/106/108106177/
4	https://archive.nptel.ac.in/courses/108/105/108105132/
	https://archive.nptel.ac.in/courses/108/106/108106177/

PBL Course Elements

L: Lecture	R: Pi	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches