SEMESTER S7

DESIGN OF SOLAR PV SYSTEMS

Course Code	OEEET721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	OE -Theory

Course Objectives:

- 1. To introduce a solar PV system and its grid integration aspects.
- 2. To give insight to basic knowhow for the implementation of Solar PV system

SYLLABUS

Module No.	Syllabus Description	Contact Hours				
	Introduction - Basic Concept of Energy -Source of Solar Energy -Formation					
	of the Atmosphere - Solar Spectrum. Solar Constant -Air Mass -Solar Time-					
	Sun-Earth Angles-Solar Radiation-Instruments to Measure Solar Radiation-					
	Pyrheliometer -Pyranometer - Sunshine Recorder -Solar Radiation on a					
1	Horizontal Surface - Extra-terrestrial Region Terrestrial Region -Solar	9				
	Radiation on an Inclined Surface -Conversion Factors -Total Solar Radiation					
	on an Inclined/Tilted Surface -Monthly Average Daily Solar Radiation on					
	Inclined Surfaces .					
	Solar Thermal system-Principle of Conversion of Solar Radiation into Heat,					
	-Solar thermal collectors -General description and characteristics -Flat plate					
	collectors -Heat transfer processes -Solar concentrators (parabolic trough,					
2	parabolic dish, Central Tower Collector) - performance evaluation.					
	Applications -Solar heating system, Air conditioning and Refrigeration	9				
	system, Pumping system, solar cooker, Solar Furnace, Solar Greenhouse -					
	Design of solar water heater					
	Solar PV Systems-Introduction -Fundamentals of Semiconductor and Solar					
3	Cells - Photovoltaic Effect -Solar Cell (Photovoltaic) Materials - Basic					
	Parameters of the Solar Cell - Generation of Solar Cell (Photovoltaic)					
	MaterialsPhotovoltaic (PV) Module and PV Array - Single-Crystal Solar					

	Cell Module, Thin-Film PV Modules, III-V Single Junction and						
	Multifunction PV Modules-Emerging and New PV Systems -Packing Factor						
	of the PV Module - Efficiency of the PV Module -Energy Balance Equations						
	for PV Modules -Series and Parallel Combination of PV Modules Effect of						
	shadowing-MPPT Techniques-P&O , incremental conductance method-						
	Maximum Power Point Tracker (MPPT) using buck-boost converter.						
	Solar PV Systems -stand-alone and grid connected -Design steps for a						
	Stand-Alone system - Storage batteries and Ultra capacitors. Design PV						
	powered DC fan and pump without battery-Design of Standalone System						
4	with Battery and AC or DC Load.						
	Life cycle costing, Growth models, Annual payment and present worth						
	factor, payback period, LCC with examples. Introduction to simulation						
	software for solar PV system design						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Explain the basics of solar energy conversion systems.	K1
CO2	Design a standalone PV system.	К3
CO3	Demonstrate the operation of a grid interactive PV system.	K2
CO4	Utilize life cycle cost analysis in the planning of Solar PV System	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1										1
CO2	3	3	3									2
CO3	3	3	2									2
CO4	3	3	2	1	2						1	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Solar Photovoltaics: Fundamentals, Technologies And Applications	Chetan Singh Solanki	PHI	3rd Edition					
2	Solar Energy-Fundamentals, Design, Modelling and Applications	G.N. Tiwari:	Narosa Publishers	2002					
3	Grid Integration of Solar Photovoltaic Systems,	D.P. Kothari, M Jamil.	CRC Press	2018					
4	Solar Photovoltaics: Fundamentals, Technologies And Applications	Chetan Singh Solanki	РНІ	3rd Edition					