SEMESTER S3

DC MACHINES & TRANSFORMERS

Course Code	PCEET303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. Describe the constructional details, working and analyse the performance of DC machines and transformers under various load conditions.

SYLLABUS

Module No.	Syllabus Description				
	Syllabus Description Constructional details of dc machines - armature winding - lap and wave - simplex, progressive only - winding diagrams of simplex, lap wound, double layer, 12-slot, 4-pole, dc armature with 12 commutator segments - winding diagram of simplex wave wound, double layer, 16-slot, 6-pole, dc armature with 12 commutator segments (winding diagram not for evaluation) DC generator - principle of operation of DC generator - emf equation - numerical problems Classification DC generators - steady-state equations - numerical problems DC shunt generator - no-load characteristics - critical field resistance,	Contact Hours			
	critical speed, voltage build-up - load characteristics – numerical problems Armature reaction - cross magnetising & demagnetising effect (computation of ampere-turns not required) – compensating winding – interpoles – commutation (concept only) – numerical problems Power flow diagram – losses and efficiency – maximum efficiency - numerical problems Parallel operation of DC shunt generators – load sharing – numerical problems	12			

	DC motor – back emf – torque equation – numerical problems		
	Classification of DC motors – steady-state equations – numerical problems		
	Characteristics of DC motors – numerical problems		
	Starting of DC motors – 3-point starter		
	Braking – regenerative braking, dynamic braking and plugging (concepts		
2	only)		
	Speed control of DC shunt and series motors – field control and armature	12	
	control – numerical problems		
	Power flow diagram – losses and efficiency – numerical problems		
	Testing - Swinburne's test – Hopkinson's test – retardation test - separation		
	of rotational losses - numerical problems		
	Single phase transformers – constructional details - principle of operation -		
	EMF equation - ideal and practical transformer – numerical problems		
	Operation on no load and on load - phasor diagram at different load		
3	conditions - equivalent circuit - voltage regulation – numerical problems	11	
	Losses and efficiency - condition for maximum efficiency - numerical		
	problems Testing of transformers - polarity test - OC test, SC test -		
	Sumpner's test – separation of losses – numerical problems		
	Autotransformer – saving of copper – numerical problems		
	3- phase transformer – construction - different connections of 3-phase		
	transformers - Y-Y, Δ-Δ, Y-Δ, Δ-Y – numerical problems		
	Difference between power transformer and distribution transformer – all-		
	day efficiency – numerical problems		
4	Scott connection for 3-phase to 2-phase conversion		
	Vector groupings – Yy0, Dd0, Yd1, Yd11, Dy1, Dy11		
	Parallel operation of 1-phase and 3-phase transformers - essential and		
	desirable conditions		
	On load and off-load tap-changers		
L		L	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the constructional details of DC machines	K2
CO2	Analyse the performance DC generator under various load conditions	К3
CO3	Analyse the performance DC motor under various load conditions	К3
CO4	Analyse the performance of 1-phase transformer and auto-transformer under various load conditions.	К3
CO5	Describe the constructional details and operation of 3-phase transformers.	К2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
CO5	3	2										3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Electrical Machinery	P.S. Bimbhra	Khanna Publishers	7 th edition
1				2021
2	Electric Machines	D P Kothari & I J	Tata McGraw Hill	5 th edition
2		Nagrath		2017
3	DC Machines & Transformers	K Murugesh Kumar	Vikas Publishing	2 nd edition
3			House	2004
4	Theory & Performance of	J.B. Gupta	S K Kataria	15 th edition
4	Electrical Machines			2022

	Video Links (NPTEL, SWAYAM)				
Module No.	Link II)				
1	NPTEL https://archive.nptel.ac.in/courses/108/105/108105155/				