SEMESTER S6

CONTROL SYSTEMS

Course Code	РСЕЕТ601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET503	Course Type	Theory

Course Objectives:

- 1. To introduce various classical tools for analysis of linear control system in time and frequency domain.
- 2. To provide a fundamental knowledge of modern control system.

SYLLABUS

Module No.	Syllabus Description	Contact Hours		
1	Introduction to Control Systems and its time domain analysis Review of Open loop and Closed loop control systems; Automatic control systems; Necessity and significance. (Not for evaluation) (1 hour) Time domain analysis of control systems: Impulse and Step responses of first and second order systems - Pole dominance for higher order systems. Time domain specifications. (4 hours) Error analysis: Steady state error analysis and static error constants. (2 hours)			
2	Root Locus Analysis and Controllers: Root locus technique: Construction of Root locus - stability analysis- effect of addition of poles and zeros; Effect of positive feedback systems on Root locus. (5 hours) Controller design: Types of controllers and their control action-	7		

	proportional (P), integral (I), derivative (D), PID control. PID tuning using	
	Ziegler-Nichols method. (2 hours)	
	Frequency domain analysis:	
3	Bode Plot: Construction, Concept of gain margin and phase margin-stability analysis. (4 hours) Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). Introduction to compensators. (Concept only). (2 hours) Polar plot: Gain margin and phase margin, Stability analysis. (2 hours) Nyquist stability criterion. Concept of Nichols Chart. (3 hours)	11
4	Introduction to state-space modelling: State variables, state equations. State variable representation of electrical systems. (2 hours) Relationship between State space and Transfer function models: Derivation of transfer functions from state equations. Controllable, Observable and Diagonal/Jordan canonical forms. Introduction to similarity transformations (concept only). (4 hours) Solution of time invariant systems: Solution of time response of autonomous systems and forced systems. State transition matrix - computation using Method of Laplace Transform and Cayley Hamilton theorem. (4 hours) Controllability & Observability: Definition, Kalman's test. (1 hour)	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 sub divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
G04	Analyse the time domain responses of linear systems and predict and diagnose transient response parameters of the system for standard input	1/2
CO1	functions.	K2
CO2	Analyse dynamics systems for their performance and stability using Root locus	К3
CO3	Apply frequency domain tools to analyse the performance of linear dynamic systems	К3
CO4	Represent and analyse dynamic systems using state-space.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	3	2	2	2	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	2	1	2	1	3	3	3			3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th edition, 2009					
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009					
3	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Automatic Control Systems,	Kuo B. C.	Prentice Hall of India	9th edition, 2014					
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th edition, 2012					
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th edition, 2013					