SEMESTER S3

CIRCUITS & NETWORKS

Course Code	PCEET302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Introduction to Electrical Engineering	Course Type	Theory

Course Objectives:

- 1. This course analyses electrical circuits in steady-state and dynamic conditions with DC and sinusoidal excitations
- **2.** It also describes the two-port networks in terms of various parameters.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Mesh analysis and nodal analysis (Review only)- super mesh and super	
	node - Superposition principle - source transformation - analysis with DC	
	and AC (sinusoidal) excitation	
1	Thevenin's theorem - Norton's theorem - Maximum power transfer	
	theorem - analysis with DC and AC (sinusoidal) excitation with	12
	independent and dependent sources.	
	Reciprocity Theorem - application to the analysis of DC Circuits.	
	Resonance - series resonance- resonant frequency - variations of	
	impedance and current with frequency - bandwidth - quality factor-	
	parallel resonance (series RL in parallel with C -calculation of resonant	
	frequency).	
2	Power in 3-phase circuits – complex power - active, reactive and apparent	12
	power in balanced load – steadystate analysis of 3-wire unbalanced delta	12
	connected circuit - steady state analysis of 3-phase 4-wire and 3-wire (using	
	Millman's theorem only) unbalanced star connected circuit -neutral shift	
	Laplace transforms(Review only)	
3	Transient response of simple series and parallel RL and RC circuits with	12

DC excitation and initial conditions – natural response and forced response – time constant - solution using Laplace transforms – transformed circuits in s-domain – solution using mesh analysis and nodal analysis Transient response of series RLC circuit with DC excitation and initial conditions – damping –overdamped, underdamped, critically damped and undamped - solution using Laplace transforms Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of coupled circuits.							
in s-domain – solution using mesh analysis and nodal analysis Transient response of series RLC circuit with DC excitation and initial conditions – damping –overdamped, underdamped, critically damped and undamped - solution using Laplace transforms Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		DC excitation and initial conditions – natural response and forced response					
Transient response of series RLC circuit with DC excitation and initial conditions – damping –overdamped, underdamped, critically damped and undamped - solution using Laplace transforms Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		- time constant - solution using Laplace transforms - transformed circuits					
conditions – damping –overdamped, underdamped, critically damped and undamped - solution using Laplace transforms Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		in s-domain – solution using mesh analysis and nodal analysis					
undamped - solution using Laplace transforms Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		Transient response of series RLC circuit with DC excitation and initial					
Transient response of simple series and parallel RL and RC circuits with sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		conditions - damping -overdamped, underdamped, critically damped and					
sinusoidal excitation and zero initial conditions – solution using Laplace transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling – conductively coupled equivalent circuit - sinusoidal steady state analysis of		undamped - solution using Laplace transforms					
transforms Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		Transient response of simple series and parallel RL and RC circuits with					
Two port networks – Z, Y, h, T parameters – conditions for symmetry and reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		sinusoidal excitation and zero initial conditions – solution using Laplace					
reciprocity – relationship between parameters – interconnection of two port networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		transforms					
networks – series, parallel and cascade Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		Two port networks – Z, Y, h, T parameters – conditions for symmetry and					
Coupled circuit – dot convention – fixing of dots – coefficient of coupling - conductively coupled equivalent circuit - sinusoidal steady state analysis of		reciprocity - relationship between parameters - interconnection of two port					
conductively coupled equivalent circuit - sinusoidal steady state analysis of		networks - series, parallel and cascade					
	4	Coupled circuit – dot convention – fixing of dots – coefficient of coupling -	9				
coupled circuits.		conductively coupled equivalent circuit - sinusoidal steady state analysis of					
		coupled circuits.					

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply circuit theorems to solve complex DC and AC electric networks	К3
CO2	Apply transformation from time domain to s-domain, solve dynamic electric circuits.	К3
CO3	Solve series and parallel resonant circuits	К3
CO4	Analyse three-phase networks in star and delta configurations under balanced and unbalanced conditions.	К3
CO5	Describe two-port networks in terms of various parameters.	К3
CO6	Explain the steady-state behaviour of coupled circuits with sinusoidal excitation	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3
CO5	3	3										3
CO6	3	3										3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Network Analysis	Van Valkenburg	Pearson	3 rd 2019					
2	Network Analysis and	Ravish R Singh	McGraw Hill	2 nd 2019					
۷	Synthesis		Education						
3	Electric Circuits & Networks	Suresh Kumar	Pearson	Ist 2008					
4	Circuits and Networks,	A Sudhakar,	McGraw Hill	5 th 2017					
4	Analysis and Synthesis	Shyammohan S Palli	Education	3 2017					