Course No.	Course Name	L-T-P-Credits	Year of Introduction
PH100	ENGINEERING PHYSICS	3-1-0-4	2016

Course Objectives

Most of the engineering disciplines are rooted in Physics. In fact a good engineer is more or less an applied physicist. This course is designed to provide a bridge to the world of technology from the basics of science and to equip the students with skills in scientific inquiry, problem solving, and laboratory techniques.

Syllabus

Harmonic Oscillations: Damped and Forced Harmonic Oscillations. Waves: One Dimensional and Three Dimensional waves, Interference: Interference in thin films (Reflected system) Diffraction: Fraunhofer and Fresnel Diffraction, Grating, Polarization of Light: Double refraction, production and detection of polarized light, Superconductivity: Properties and Applications. Quantum Mechanics: Schrodinger Equations- Formulation and Solution, Operators, Applications. Statistical Mechanics: Microstates and macro states Maxwell - Boltzmann, Bose-Einstein and Fermi Dirac statistics. Fermi level and its significance. Acoustics: Intensity of sound, Reverberation and design concepts, Ultrasonics: Production, Detection and Applications, NDT methods, Lasers: Properties, Working Principles, Practical Lasers. Photonics: Basics of Solid State lighting, Photo detectors, Solar Cells, Fiber Optics.

Expected outcome

Familiarity with the principles of Physics and its significance in engineering systems and technological advances.

References:

- Aruldhas, G., Engineering Physics, PHI Ltd.
- Beiser, A., Concepts of Modern Physics, McGraw Hill India Ltd.
- Bhattacharya and Tandon, Engineering Physics, Oxford India
- Brijlal and Subramanyam, A Text Book of Optics, S. Chand & Co.
- Dominic and Nahari, A Text Book of Engineering Physics, Owl Books Publishers
- Hecht, E., Optics, Pearson Education
- Mehta, N., Applied Physics for Engineers, PHI Ltd
- Palais, J. C., Fiber Optic Communications, Pearson Education
- Pandey, B. K. and Chathurvedi, S., Engineering Physics, Cengage Learning
- Philip, J., A Text Book of Engineering Physics, Educational Publishers
- Premlet, B., Engineering Physics, Mc GrawHill India Ltd
- Sarin, A. and Rewal, A., Engineering Physics, Wiley India Pvt Ltd
- Sears and Zemansky, University Physics, Pearson
- Vasudeva, A. S., A Text Book of Engineering Physics, S. Chand & Co

Web:

www.physics.org

www.howstuffworks.com www.physics.about.com

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
Ι	Harmonic Oscillations: Differential equation of damped harmonic oscillation, forced harmonic oscillation and their solutions- Resonance, Q factor, Sharpness of resonance- LCR circuit as an electrical analogue of Mechanical Oscillator (Qualitative)	5	15%		
	Waves: One dimensional wave - differential equation and solution. Three dimensional waves - Differential equation & its solution. (No derivation) Transverse vibrations of a stretched string.	4			
Π	Interference: Coherence. Interference in thin films and wedge shaped films (Reflected system) Newton's rings-measurement of wavelength and refractive index of liquid Interference filters. Antireflection coating.	5			
	Diffraction Fresnel and Fraunhofer diffraction. Fraunhofer diffraction at a single slit. Plane transmission grating. Grating equation - measurment of wavelength. Rayleigh's criterion for resolution of grating- Resolving power and dispersive power of grating.	4	15%		
FIRST INTERNAL EXAM					
III	Polarization of Light: Types of polarized light. Double refraction. Nicol Prism. Quarter wave plate and half wave plate. Production and detection of circularly and elliptically polarized light. Induced birefringence- Kerr Cell - Polaroid & applications.	4	15%		
	Superconductivity: Superconducting phenomena. Meissner effect. Type-I and Type-II superconductors. BCS theory (qualitative). High temperature superconductors - Applications of superconductors.	5	1070		
IV	Quantum Mechanics: Uncertainty principle and its applications- formulation of Time dependent and Time independent Schrödinger equations- physical meaning of wave function- Energy and momentum Operators-Eigen values and functions- One dimensional infinite square well potential .Quantum mechanical Tunnelling (Qualitative)	6	15%		
	Statistical Mechanics: Macrostates and Microstates. Phase space. Basic postulates of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac	3			

	statistics. Distribution equations in the three cases (no derivation). Fermi Level and its significance.				
SECOND INTERNAL EXAM					
V	Acoustics: Intensity of sound- Loudness-Absorption coefficient -				
	Reverberation and reverberation time- Significance of reverberation time-	3			
	Sabine's formula (No derivation) -Factors affecting acoustics of a building.				
	Ultrasonics: Production of ultrasonic waves - Magnetostriction effect and		20%		
	Piezoelectric effect - Magnetostriction oscillator and Piezoelectric	4			
	oscillator - Detection of ultrasonics - Thermal and piezoelectric methods-				
	Applications of ultrasonics - NDT and medical.				
VI	Laser: Properties of Lasers, absorption, spontaneous and stimulated				
	emissions, Population inversion, Einstein's coefficients, Working principle				
	of laser, Optial resonant cavity. Ruby Laser, Helium-Neon Laser,	5			
	Semiconductor Laser (qualitative). Applications of laser, holography				
	(Recording and reconstruction)				
	Photonics: Basics of solid state lighting - LED – Photodetectors - photo		2004		
	voltaic cell, junction & avalanche photo diodes, photo transistors, thermal		2070		
	detectors, Solar cells- I-V characteristics - Optic fibre-Principle of				
	propagation-numerical aperture-optic communication system (block	5			
	diagram) - Industrial, medical and technological applications of optical				
	fibre. Fibre optic sensors - Basics of Intensity modulated and phase				
	modulated sensors.				
END SEMESTER EXAM					