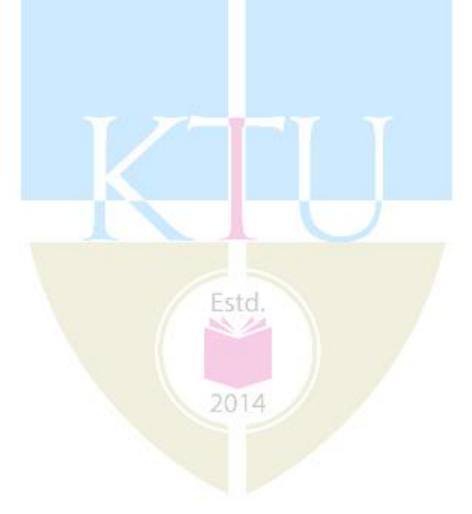
Course N	No. Course Name	L-T-P - Credits		Year of roduction
MA20	2 Probability distributions, Transforms and Numerical Methods	3-1-0-4		2016
Prerequis	site: Nil			
Course O	bjectives			
• To	introduce the concept of random variables, probabil	lity distributions, s	specific	discrete
	d continuous distributions with practical application	in various Engine	ering a	nd social
	e situations.	$A \mid A \mid A$		
	know Laplace and Fourier transforms which has wi	de application in a	all Engi	neering
	urses.			
• To Syllabus	enable the students to solve various engineering pl	roblems using nun	nerical	methods.
Continuous Fourier tra Laplace T Numerica ordinary d Expected After the (i) Discret	ndom variables and Discrete Probability Distribution. s Random variables and Continuous Probability Distri- ansforms. I methods-solution of Algebraic and transcendental H al solution of system of Equations. Numerical H lifferential equation of First order. d outcome . completion of the course student is expected to have ete and continuous probability density functions and ace and Fourier transforms and apply them in their H	Equations, Interpo Integration, Num ve concept of special probabilit	erical : y distril	
	o ks: iller and Freund's "Probability and statistics for Engi win Kreyszig, "Advanced Engineering Mathematics			
 C. Jay Steep 	ces: Sundarapandian, "Probability, Statistics and Queuin Ray Wylie and Louis C. Barrett, "Advanced Engineering L. Devore, "Probability and Statistics for Engineering a even C. Chapra and Raymond P. Canale, "Numerical lition-Mc Graw Hill.	g Mathematics"-Six nd Science"-Eight H	th Editi Edition.	on.
	Course Plan	/ ·		
Module	Contents	H	lours	Sem. Exam
	Discrete Probability Distributions. (Relevant top	ics in		Marks
Ι	section 4.1,4,2,4.4,4.6 Text1) Discrete Random Variables, Probability distributio Cumulative distribution function. Mean and Variance of Discrete Probability Distribu- Binomial Distribution-Mean and variance. Poisson Approximation to the Binomial Distribution distribution-Mean and variance.	ution.	2 2 2 2	Marks

	Continuous Probability Distributions. (Relevant topics in		
	section 5.1,5.2,5.5,5.7 Text1)		
	Continuous Random Variable, Probability density function,	2	
	Cumulative density function, Mean and variance.		
II	Normal Distribution, Mean and variance (without proof).	4	
	Uniform Distribution.Mean and variance.	2 2	
	Exponential Distribution, Mean and variance.	2	
	ADI ADDITI IZALAA	4	15%
	FIRST INTERNAL EXAMINATION		
III	Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) Fourier Integrals. Fourier integral theorem (without proof).	3	15%
111	Fourier Transform and inverse transform.	3 3	
	Fourier Sine & Cosine Transform, inverse transform.	3	
			4 5
	Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2)		15%
	Laplace Transforms, linearity, first shifting Theorem.	3	
	Transform of derivative and Integral, Inverse Laplace	4	
IV	transform, Solution of ordinary differential equation using		
	Laplace transform.		
	Unit step function, second shifting theorem.	2	
	Consultation Theorem (without any f)	2	
	Convolution Theorem (without proof).	2	
	Differentiation and Integration of transforms.	2	
	SECOND INTERNAL EXAMINATION		
	Numerical Techniques.(Relevant topics in		20%
	section.19.1,19.2,19.3 Text2)		
	Solution Of equations by Iteration, Newton- Raphson Method.	2	
V	Interpolation of Unequal intervals-Lagrange's Interpolation formula.	2	
	Interpolation of Equal intervals-Newton's forward difference	3	
	formula, Newton's Backward difference formula.		
	Numerical Techniques. (Relevant topics in section		20%
	19.5,20.1,20.3, 21.1 Text2)		
	Solution to linear System- Gauss Elimination, Gauss Seidal	3	
VI	Iteration Method.	2	
	Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule.	3	
	Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order)	3	
	Runge-Kutta Method (fourth order).		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours


The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

