Course N	No. Course Name	L-T-P - Credits	i Int	Year of roduction				
MA202	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016				
Prerequis	ite : Nil							
Course Objectives								
COURSE	OBJECTIVES							
• To	equip the students with methods of solving a general s	system of linear equ	ations.					
• To	familiarize them with the concept of Eigen values and	diagonalization of	a matrix v	which have				
ma	ny applications in Engineering.							
• To	understand the basic theory of functions of a complex	variable and confo	rmal Trans	formations.				
To understand the suble theory of functions of a complex variable and conformal fransformations.								
Syllabus	LINHV/FD CI	TV						
Analyticit	v of complex functions-Complex differentiation-C	Conformal mappir	ngs-Comp	lex				
integration	-System of linear equations-Eigen value problem	omornini inippi	-85 Comp					
megranor	i System of mical equations Engen value problem							
Expected	loutcome							
At the end	of the course students will be able to							
(i) solve an	y given system of linear equations							
(ii) find the	Eigen values of a matrix and how to diagonalize a ma	trix						
(iii) identif	v analytic functions and Harmonic functions.							
(iv)evaluat	e real definite Integrals as application of Residue Theo	rem						
(v) identify	conformal mappings(vi) find regions that are mapped	under certain Tran	sformatior	S				
Text Bo	$\frac{110}{2}$							
Erwin Kr	evszig: Advanced Engineering Mathematics, 10 th ed. W	Vilev						
Referen	res:							
1.Dennis g	Zill&Patric D Shanahan-A first Course in Complex A	nalysis with Applic	cations-Jon	es&Bartlet				
Publishers	1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
2.B. S. Gre	wal. Higher Engineering Mathematics, Khanna Publisl	hers, New Delhi.						
3.Lipschutz	z, Linear Algebra,3e (Schaums Series)McGraw Hill E	ducation India 200	5					
4.Complex	variables introduction and applications-second edition	-Mark.J.Owitz-Ca	mbridge Pu	ublication				
	Course Plan							
				Sem. Exam				
Module	Contents		Hours	Marks				
	Complex differentiation Text 1[13.3,13.4]							
	Limit, continuity and derivative of complex function	S	3					
	2014	1						
	Analytic Functions		2					
I	Cauchy–Riemann Equation(Proof of sufficient condition)	tion of	2					
	analyticity & C R Equations in polar form not require	ed)-Laplace's	-					
	Equation							
			2					
	Harmonic functions, Harmonic Conjugate		2	150/				
	Conformal mounings Tout 4[47.4.47.4]			13%				
	Conformal mapping: Text 1/17.1-17.4		1					
тт	1							
11			2					
	Mapping $w = z^{-}$ conformality of $w = e^{-}$.		Z	1 = ~ /				
				15%				

	The mapping $w = z + \frac{1}{z}$		
	Properties of $w = \frac{1}{z}$		
	Circles and straight lines, extended complex plane, fixed points		
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3	
	Conformal mapping by $w = \sin z \& w = \cos z$	3	
	(Assignment: Application of analytic functions in Engineering)		
	FIRST INTERNAL EXAMINATION		
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]		
	Definition Complex Line Integrals, First Evaluation Method, Second	2	
	Evaluation Method	2	
	path(without proof). Cauchy's Integral Theorem for Multiply	2	1504
	Connected Domains (without proof)		13%
III	Cauchy's Integral Formula- Derivatives of Analytic	2	
	Functions(without proof)Application of derivative of Analytical	-	
	Functions Taylor and Maclaurin series (without proof). Power series as Taylor		
	series. Practical methods(without proof)	2	
	Laurent's series (without proof)	2	
	Residue Integration Text 1 [16.2-16.4]		15%
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic	2	
	Tunctions	V	
	Residue Integration Method, Formulas for Residues, Several	4	
	singularities inside the contour Residue Theorem.		
IV			
	Evaluation of Real Integrals (i) Integrals of rational functions of	3	
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int f(x)dx$ (Type I, Integrals		
	from 0 to ∞)		
	SECOND INTERNAL EXAMINATION		20%
	Linear system of Equations Text 1(7.3-7.5)		2070
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1	
V	Gauss Elimination and back substitution. Elementary row operations		
	Row equivalent systems, Gauss elimination-Three possible cases.	~	
	Row Echelon form and Information from it.	5	

	Linear independence-rank of a matrix	2			
	Vector Space-Dimension-basis-vector space R ³				
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1			
VI	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%		
	Determination of Eigen values and Eigen vectors-Eigen space	3			
	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2			
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4			
	(Assignment-Some applications of Eigen values(8.2))				
END SEMESTER EXAM					

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.