Course co	de Course Name	L-T-P -Credits	Year Introdu	of ction		
EE467	Nonlinear Control Systems	3-0-0-3	2016			
Prerequis	ite: Nil					
Course O	bjectives:					
• To introduce the need and concept of nonlinear system.						
• To impart knowledge about different strategies adopted in the analysis of nonlinear						
systems.						
• To familiarize with the design of different types of nonlinear controllers.						
Syllabus:	TECLINIOLO	CICAI				
Characteri	stics of nonlinear systems- equilibrium poi	nts-phase plane analys	sis-periodi	c orbits-		
stability of nonlinear systems-Lyapunov stability-variable gradient method-centre manifold						
theorem-c	ircle criterion-Popov criterion-Feedback linear	rization-Exact Feedback	linearizat	ion.		
Expected	outcome	-				
The stude	its will be able to					
i. de	sign controllers for nonlinear systems.					
ii. an	alyse the stability of nonlinear systems using v	arious approaches.				
Text Boo	oks:			1007		
1. A	Iberto Isidori, "Nonlinear Control Systems: Ai	n Introduction", Springe	er-Verlag,	1985		
2. H	assan K Khalil, Nonlinear Systems, Prentice -	Hall International (UK), 2002.	T 11 NTT		
3. Je	ean-Jacques E. Slotine and Weiping Li, "Appli	ed Nonlinear Control",	Prentice-I	Hall, NJ,		
Defenen	991.					
Kelerend 1 N	es: [Vidvasagar "Nonlingar Systems Analysis"]	Prentice Hall India 10	21			
1. M. Vldyasagar, Nonlinear Systems Analysis, Pfenuce-Hall, India, 1991, 2. Shapkar Sastry, "Nonlinear System Analysis, Stability and Control", Springer, 1000						
2. 0	Course Pl	an		<i>))</i> .		
				Sem.		
Module	Contents	\sim	Hours	Exam Marks		
	Introduction - Characteristics of nonlinear sy	stems - Classification				
Т	of equilibrium points- analysis of systems w	ith piecewise constant	7 15%			
1	inputs using phase plane analysis.		,	1070		
	Periodic orbits - limit cycles-Poincare-E	Bendixson criterion-				
п	Bendixson criterion. Existence and uniqu	ieness of solutions,	7	15%		
	Lipschitz condition.		,			
	2014					
	FIRST INTERNAL EXA	MINATION				
	Stability of Nonlinear Systems - Lyapunov st	ability - local stability				
	- local linearization and stability in the sm	all- Direct method of	_			
III	Lyapunov - generation of Lyapunov fun	ction for linear and	7	15%		
	nonlinear systems – variable gradient method	1.				
	Contro monifold theorem reasing of attractive	on Eadhach Control				
IV	centre mannoit theorem - region of attraction	bil - reeuback Control				
	Criterion – Ponov Criterion	IDACK Systems- Circle	7	15%		
SECOND INTERNAL EXAMINATION						

V	Feedback linearization- Design via linearization- stabilization - regulation via integral control- gain scheduling.	7	20%			
VI	Exact Feedback Linearization - Input state linearization - input output linearization - state feedback control - stabilization - tracking - integral control.	7	20%			

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.