Course co	ode Course Name	L-T-P - Credits	Y Intr	ear of		
EE463	Computer Aided Power Systems Analysis	3-0-0-3		2016		
Droroquis	ite: FE306 Dower system analysis	5-0-0-5		2010		
Course Objectives						
Course Objectives						
• 10 • To	understand the solution mathede and techniques used in neuron	lS	. dia a			
• To understand the solution methods and techniques used in power system studies						
	ADI ADDITI LAT	AK	1			
Syllabus:						
Development of network matrices from Graph theory-Formulation of Bus impedance matrices-						
Load Flow Analysis-Optimal Power Flow-Network fault calculations-Contingency analysis in						
Power systems.						
Expected	outcome:		1.			
• Th	e students will gain the ability to critically analyse the solution n	iethods i	ised in	power		
sys	stem studies.		_			
1 Iext Boo	NKS: Norm D. Dannan, Mühan Mühal, Dannan, Sandarma, Amalasia (Danilish) (D.			
I. Ar	1. Arthur R. Bergen, Vijay Vittal, Power Systems Analysis (English) 2nd Edition, Pearson					
	Higher Education					
2. G.I	L. Kusic, Computer Alded Power System Analysis, PHI, 1989	Tata M	Creat	. 11:11		
3. 10	in J. Grainger, william D. Slevenson, Jr., Power System Analysis	s, Tata M	cGrav	/-H111		
	A Dei Computer Techniques in Dever Systems Analysis Teta I	A.C.marry	11:11	Second		
4. M.	A. Pai, Computer Techniques in Power Systems Analysis, Tata I	McGraw	·HIII, S	Second		
Deferrer		-				
	es: Nearath and D. D. Kathari, "Madam Davier System Analysis", Ta			1 1000		
1. I.J. 2 I	Nagrain and D.P.Koinari, Modern Power System Analysis, Tal	a McGra	$1 \times H_{11}$	I, 1980 John		
2. J. Arriliga and N.R. watson, Computer modelling of Electrical power systems, 2/e, John						
	Singh "A dyanged Power System Analysis and Dynamics" 2/2	Now Ac	o Intl	1006		
J. Lr	and El Abiad "Computer methods in Power system Analysis	McGr	C IIII,	1990.		
4. 50	Course Plan	, MCOI	tw 1111	1,1900.		
Modulo	Contents	Ľ	ourc	Som		
WIUUUIC	Contents	11	ours	Sem. Evom		
				Lam Morks		
T	Overview of Graph theory stree costree and incidence ma	trix				
1	Development of network matrices from Graph theoretic approac	h				
	Review of solution of Linear System of equations by Gauss Io	rdan	7	15%		
	method. Gauss elimination LDU factorization	Gull				
II	Bus Reference Frame: Injections and Loads Zhus and Y h					
**	Formulation of Bus Impedance matrix for elements with	out	7	15%		
	Mutual Coupling.	out	,	1070		
FIRST INTERNAL EXAMINATION						
III	Inversion of YBUS for large systems using LDU factors. Tim	nev's				
111	Ontimal ordering	10 y 5				
	Review of Gauss-Seidel Iteration using YBUS Newton-Raphso	n	6	15%		
	method East Decounled Load Flow (FDLF)		0	1.5 /0		
	DC load flow Three-phase Load Flow					
IV	Adjustment of network operating conditions. Optimal power f	low				
I V	concepts active/reactive nower objectives (Economic dispatch	MW				
	and MVAr loss minimization) $-$ applications - security constra	ined	8	15%		
	ontimal nower flow	incu				
	SECOND INTEDNAL EVAMINATION			<u> </u>		
SECOND IN LEKNAL EAAMIINATION						

V	Network fault calculations using ZBUS and YBUS Table of Factors, Algorithm for calculating system conditions after fault – three phase short circuit, three phase to ground, double line to ground, line to line and single line to ground fault.	7	20%
VI	Contingency analysis in Power systems : Contingency Calculations using ZBUS and YBUS Table of Factors. State estimation – least square and weighted least square estimation methods for linear systems.	7	20%

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

