Course cod	le.	Course Name	L-T-P - Credits	Year of Introduction
EE431		Power Systems Lab	0-0-3-1	2016
Prerequisit	te:E	EE306 Power System Analysis		
Course Ob	jecti	ves		
• Impa	art p	ractical knowledge about various power system equip	ment	
• Get	a kn	owledge about the operation of power systems and the	e philosophy	v behind the relav
		fault calculations etc.	AM	j
		I ILIOIO	the design	of norman
		the power system operations which will be helpful in	i the design	of power
syste	ems	LUT TO CIT	A hard	
	_			
	ercis	ses/Experiments: (At least 12 experiments out o	of 18 exper	iments listed are
mandatory)				
1 172-	• • •	11 S		
		local Substation.	uma and la	an about their
Alli		b see firsthand apparatus that will be studied in this co	ourse and lea	arn about their
2 Int		ble in operation and protection of power systems.		
		Learn the usage of PSCAD/MATLAB/MIPOWER in	n modeling	of a circuits and
Am		plotting of results.	i modenng (of ac circuits and
		. Understanding reactive power and power factor in si	ngle_nhase	and three_phase
		circuits.	ingic-phase	and three-phase
3 Tra		hission Line and Modeling.		
		Detaining the parameters of a 345 kV transmission line	e and model	ing it in
111		PSCAD/MATLAB/MIPOWER		
4. Pow				
	-	carry out power flow calculations.		
		rmers in Power Flow.		
		look at the influence of including a tap-changer and a	a phase-shif	ter on power
		w and bus voltages.	1	I I I
6. Incl		ag an HVDC Transmission Line for Power Flow.		
Aim	n: 1).	To include an HVDC transmission line and see its ef	fect on pow	er transfer on
		other transmission line.	· ·	
	2)	. To understand the operating principle of 12-pulse th	yristor conv	erters used in
	H	HVDC transmission systems.		
7. Pov		Quality.		
Ain	n: To	o obtain the current harmonics drawn by power electro	onics interfa	ce.
-		onous Generators.		
		o obtain the effect of sudden short-circuit on a synchro	onous genera	ator output.
	0	Regulation.		
Ain	n: 1)	. To study the effect of real and reactive powers on bu	is voltages.	

2). Understanding the operation of a Thyristor Controlled Reactor (TCR).

10. Transient Stability.

Aim: To simulate transient stability in a 3-bus example power system.

10. A. Making a Power System Reliable.

Aim: 1). To understand the planning/design process that goes into making a power system reliable.

11. AGC and Economic Dispatch.

Aim: Study the dynamic interaction between two control areas using *Simulink* modeling and economic dispatch.

12. Short Circuit Faults and Overloading of Transmission Lines.

Aim: To study the effect of short-circuit faults and overloading of transmission lines.

12.A. Fault Analysis with Relay Settings.

Aim : To study a power system with faults and determine relay settings based on calculated fault currents

13. Switching Over-Voltages and Modeling of Surge Arresters.

Aim. : To study over-voltages resulting from switching of transmission lines and limiting them by sing ZnO arresters

14. Power Factor improvement:

Aim : To calculate rating of capacitors for power factor correction for a load and verifying it experimentally.

15. Solar Power Calculations :

Aim : To calculate the rating of solar panel required for a given area on rooftop or for a given load

16. Demonstration of Ferranti Effect on a transmission line

- **17. Methods of Insulation Testing**
- **18. Modern Energy Meter calibration schemes**

Expected outcome.

• Students will be able to design, setup and analyse various power systems and its simulations.

Text Book:

Ned Mohan, First Course in Power Systems, Wiley.

