| Course                |                                                                                                                             | L-T-P -                 |          | ar of                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-----------------------|
| code                  |                                                                                                                             | Credits                 |          | duction               |
| <b>EE404</b>          |                                                                                                                             | 3-0-0-3                 | 2        | 016                   |
| Dronoquio             | AUTOMATION                                                                                                                  |                         |          |                       |
| Prerequis<br>Course O |                                                                                                                             |                         | -        |                       |
| Course                | <ul> <li>To impart knowledge about Industrial instrumentation and</li> </ul>                                                | lautomat                | ion      |                       |
| Syllabus:             | • To impart knowledge about industrial instrumentation and                                                                  | automat                 |          |                       |
| v                     | characteristic of instrumentation- Transducers: Characteristic                                                              | s Appli                 | cations  | – Nano                |
|                       | tation - signal conditioning, MEMS, Virtual instrumentation                                                                 |                         |          |                       |
|                       | - sequence control, PLC                                                                                                     |                         |          | <i>J</i> ~~~~         |
|                       | Outcome:                                                                                                                    |                         |          |                       |
| -                     | completion of the course, the students will be able to:                                                                     |                         |          |                       |
| i.                    | Select instruments and transducers for various physical variab                                                              | les.                    |          |                       |
| ii.                   | Get an insight on data acquisition, processing and monitoring                                                               | system                  |          |                       |
| iii.                  | Design various signal conditioning systems for transducers.                                                                 |                         |          |                       |
| iv.                   | Analyze dynamic responses of various systems.                                                                               |                         |          |                       |
| v.                    | Get the concepts of virtual instrumentation                                                                                 |                         |          |                       |
| vi.                   | Understand the programming realization of PLC                                                                               |                         | _        |                       |
| Text book             |                                                                                                                             |                         |          |                       |
|                       | rtis D Johnson," Process Control Instrumentation Technology                                                                 |                         |          |                       |
|                       | beblin E.O, 'Measurement Systems: Application and Design, 1                                                                 | Fourth E                | lition,  | McGraw                |
|                       | II, Newyork, 1992                                                                                                           |                         |          | Deve I tal            |
|                       | /S. Murty, 'Transducers and Instrumentation' Second Edition w Delhi, 2013                                                   | I, PHI LO               | arning   | PVI LIA               |
|                       | adhuchhanda Mitra, Samarjit Sengupta, 'Programmable Logic (                                                                 | Controller              | 's and I | ndustrial             |
|                       | tomation An Introduction', Penram International Publishing (Ir                                                              |                         |          |                       |
|                       | ckell. P. Groover 'Automation, Production and computer in                                                                   |                         |          |                       |
|                       | entice Hall of India, 1992                                                                                                  |                         |          |                       |
|                       | tranabis, D., 'Principles of Industrial Instrumentation', Secon                                                             | d Editior               | Tata     | McGraw                |
| Hi                    | ll Publishing Co. Ltd New Delhi                                                                                             |                         |          |                       |
| <b>7.</b> Ro          | ll Publishing Co. Ltd New Delhi<br>bert B. Northrop, 'Introduction to instrumentation and measure                           | <mark>ment</mark> s', C | RC, Ta   | ylor and              |
| Fra                   | ancis 2005                                                                                                                  |                         |          |                       |
| Reference             |                                                                                                                             |                         |          |                       |
|                       | K.McMillan, 'Process/Industrial Instrument and control and ha                                                               | and book                | ' McGı   | aw Hill,              |
|                       | w York,1999                                                                                                                 |                         | ~        |                       |
|                       | chael P .Lucas, 'Distributed Control system', Van Nastrant F                                                                | Reinhold                | Compa    | ny, New               |
| Yo                    |                                                                                                                             |                         |          |                       |
|                       | Course Plan                                                                                                                 |                         |          |                       |
| Module                | Contents                                                                                                                    | E                       | lours    | Sem.<br>Exam<br>Marks |
| _                     | Introduction to Process Control - block diagram of process co<br>loop, definition of elements. Sensor time response - first |                         | 6        | 15%                   |
| Ι                     | second order responses.                                                                                                     |                         | 0        | 13%                   |

|     | factors influencing choice of transducer                            |     |     |
|-----|---------------------------------------------------------------------|-----|-----|
| П   | Applications of Transducers                                         |     |     |
|     | Displace measurement: Resistance potentiometer, Capacitive and      |     |     |
|     | Inductive. Capacitive differential pressure measurement             |     |     |
|     | Torsional, shearing stress and rotating shaft Torque measurement    | 8   | 15% |
|     | using strain gauge. Flow measurement :Hotwire anemometer,           |     |     |
|     | constant resistance Constant current type Eddy current sensors,     | A   |     |
|     | Variable reluctance tachometers                                     | V.L |     |
|     | Phase measurement : Analog and digital phase detectors              | T   |     |
|     | Nano Instrumentation                                                | 1.5 |     |
|     | FIRST INTERNAL EXAMINATION                                          |     | ·   |
| III | Signal conditioning circuits-Instrumentation amplifiers-            |     |     |
|     | Unbalanced bridge. Bridge linearization using op amp                |     | 15% |
|     | Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation  | 7   |     |
|     | amplifier, Switched capacitor circuits, Phase sensitive detectors,  |     |     |
|     | Noise problem in instrumentation and its minimisation               |     |     |
| IV  | Micro Electromechanical system (MEMS)                               | 7   |     |
|     | Advantages and Applications, MEMS micro sensors and actuators,      |     |     |
|     | Manufacturing process: Bulk micro machining and surface             |     |     |
|     | micromachining, MEMS accelerometers                                 |     | 15% |
|     | Virtual instrumentation system: architecture of virtual instruments |     |     |
|     | – Virtual instruments and traditional instruments – concepts of     |     |     |
|     | graphical programming                                               |     |     |
|     | SECOND INTERNAL EXAMINATION                                         |     |     |
|     | Overview of Automation System - Architecture of Industrial          |     |     |
|     | Automation Systems, Different devices used in Automation            | 7   | 20% |
| V   | Actuators, definition, types, selection.                            |     |     |
|     | Pneumatic, Hydraulic, Electrical, Electro-Pneumatic and valves,     |     |     |
|     | shape memory alloys                                                 |     |     |
|     | Introduction to Sequence Control, PLCs - Working, Specifications    | 7   |     |
| VI  | of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC,          |     | 20% |
|     | Relay Ladder Logic- PLC Programming- realization of AND, OR         |     |     |
|     | logic, concept of latching, Introduction to Timer/Counters,         | '   |     |
|     | Exercises based on Timers, Counters. Basic concepts of SCADA,       |     |     |
|     | DCS and CNC                                                         |     |     |
|     | END SEMESTER EXAM                                                   |     |     |

1-1

## **QUESTION PAPER PATTERN:**

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions.  $(8 \times 5)=40$ 

**Part B**: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions:  $(2 \times 10) = 20$ . Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

**Part C**: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions:  $(2 \times 10) = 20$ . Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

**Part D**: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions:  $(2 \times 10) = 20$ . Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

