COURS	E COURSE NAME	L-T-P- CREDITS	YE INTRO	AR OF DUCTION			
EE403	DISTRIBUTED GENERATION AND SMART	3-0-0-3	,	2016			
	A DI A GRIDS T TI IZA	TAA	4				
Prerequisite: Nil							
Course of	ojective.	IC A	T				
• To develop a conceptual introduction to various distributed generation systems, micro grids,							
smart grids and their control							
Syllabus:							
Introducti	on to distributed generation and smart grids - Distributed	d Energy Res	ources –	Micro Grids			
and their	control – Protection issues for Microgrids - Smart Grid	s: Componen	ts – NIS'	Γ Reference			
architectu	re – Smart meters - Wide Area Measurement System (W	VAMS), Phas	se Measu	rement Unit			
(PMU) - demand response- Demand Side Management - Smart Substations, HAN, NAN, SANET,							
Cloud con	puting in smart grid – Power Quality issues with smart g	grid					
Expected	Outcome:						
The stude	nts will be able to:						
i. Ex	plain various distributed generation systems						
ii. Ur	derstand the microgrids and their control schemes						
iii. Ur	derstand various developments happening in the field of	Smart Grids.					
ТЕХТ В	JOKS/REFERENCES:						
1. Ali Keyhani, Design of Smart Power Grid Renewable Energy Systems, ISBN: 978-0-470- 62761-7, Wiley							
2. James Momoh, Smart Grid: Fundamentals of Design and Analysis, ISBN: 978-0-470-88939-							
8, Wiley							
3. R. C. Durgan, M. F. Me Granaghen, H. W. Beaty, "Electrical Power System Quality",							
4. Remus Teodorescu, Marco Liserre, Pedro Rodriguez, Grid Converters for Photovoltaic and							
Wind Power Systems, ISBN: 978-0-470-05751-3, Wiley							
5. S.	5. S. Chowdhury, S.P. Chowdhury and P. Crossley, Microgrids and Active Distribution						
Ne	tworks, ISBN 978-1-84919-014-5, IET, 2009						
	COURSE PLAN						
Module	Contents		Hours	End.			
				Sem.			
				Exam.			
				Marks			
I	Distributed generation – Introduction - Integration of a	listributed		1.1001 110			
-	generation to Grid – Concepts of Micro Grid - Typical	Microgrid	7	15%			
	configurations - AC and DC micro grids - Intercon	nection of	/	_ , *			
	Microgrids - Technical and economical advantages of M	licrogrid -					

	Challenges and disadvantages of Microgrid development Smart Grid: Evolution of Electric Grid - Definitions and Need for Smart Grid, Opportunities, challenges and benefits of Smart		
II	Grids Distributed energy resources: Introduction - Combined heat and		
	power (CHP) systems - Solar photovoltaic (PV) systems – Wind energy conversion systems (WECS) - Small-scale hydroelectric power generation - Storage devices: Batteries: Lead acid, nickel metal hydrate, and lithium ion batteries , ultra-capacitors, flywheels Control of Microgrids: Introduction to Central Controller (CC) and Microsource Controllers (MCs) - Control functions for microsource controller, Active and reactive power control, Voltage control, Storage requirement for fast load tracking, Load sharing through power-frequency control		15%
III	Protection issues for Microgrids: Introduction, Islanding, Different islanding scenarios, Major protection issues of stand- alone Microgrid - Impact of DG integration on electricity market, environment, distribution system, communication standards and protocols. Smart Grid: Components – NIST Smart Grid Reference Architecture Introduction to Smart Meters, Electricity tariff – one part tariff, two tariff and maximum demand tariff - Dynamic pricing: time- of-use (TOU) pricing, critical-peak pricing (CPP) and Real Time Pricing- Automatic Meter Reading(AMR), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation. Intelligent Electronic Devices (IED) and their application for monitoring & protection, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).	7	15%
IV	Smart energy efficient end use devices-Smart distributed energy resources- Load Curves-Load Shaping Objectives-Methodologies - Peak load shaving - Energy management-Role of technology in demand response- Demand Side Management – Numerical Problems	7	15%
V	Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood-Area Networks (NANs), Sensor and Actuator Networks (SANETs) Smart Substations, Substation Automation, IEC 61850 Substation Architecture, Feeder Automation.	7	20%

VI	Cloud computing in smart grid: Private, public and Hybrid cloud.Cloud architecture of smart grid.Power quality: Introduction - Types of power quality disturbances- Voltage sag (or dip), transients, short duration voltage variation,		
	Long duration voltage variation, voltage imbalance, waveform distortion, and voltage flicker - Harmonic sources: SMPS, Three phase power converters, arcing devices, saturable devices, fluorescent lamps, harmonic indices (THD, TIF, DIN, C – message weights) Power quality aspects with smart grids.	8	20%
	UNIVERSILI		

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.