Course	Course Name	L-T-P -	Year of			
code		Credits	Introduction			
EE372	Biomedical Instrumentation	3-0-0-3	2016			
Prerequisite: Nil						

Course Objectives

• To give a brief introduction to human physiology and various instrumentations system for measurement and analysis of physiological parameters.

Syllabus:

Development of biomedical instrumentation, Sources of bioelectric potentials, Bio potential electrodes, Electro-conduction system of the heart, Measurement of blood pressure, Measurement of heart sounds, Cardiac pacemakers, defibrillators, Electro encephalogram, Muscle response, Respiratory parameters, Therapeutic Equipments, Imaging Techniques, Instruments for clinical laboratory, Electrical safety, tele- medicine

Expected outcome.

Text Book:

- 1. J. G. Webster, Medical Instrumentation, Application and Design, John Wiley and Sons
- 2. L. Cromwell, F. J. Weibell and L. A. Pfeiffer, Biomedical Instrumentation Measurements, Pearson education, Delhi, 1990.

References:

- 1. R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata Mc Graw Hill
- 2. J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
Ι	Development of biomedical instrumentation, biometrics, man instrument system components block diagram, physiological systems of the body (brief discussion on Heart and cardio vascular system, Anatomy of nervous system, Physiology of respiratory systems) problems encountered in biomedical measurements. Sources of bioelectric potentials – resting and action potentials - propagation of action potentials – bio electric potentials example (ECG, EEG, EMG, ERG, EOG,EGG etc.)	7	15%		
П	Bio potential electrodes – theory – microelectrodes – skin surface electrodes – needle electrodes – biochemical transducers – transducers for biomedical applications. Electro-conduction system of the heart. Electro cardiography – electrodes and leads – Einthoven triangle, ECG read out devices, ECG machine – block diagram.	7	15%		
FIRST INTERNAL EXAMINATION					
III	Measurement of blood pressure – direct and indirect measurement – oscillometric measurement –ultrasonic method, measurement of blood flow and cardiac output, plethysmography –photo electric and impedance plethysmographs Measurement of heart sounds –phonocardiography.	7	15%		

IV	Cardiac pacemakers – internal and external pacemakers, defibrillators. Electro encephalogram –neuronal communication – EEG measurement. Muscle response– Electromyogram (EMG) – Nerve Conduction velocity measurements- Electromyogram Measurements. Respiratory parameters – Spiro meter, pneumograph	7	15%		
SECOND INTERNAL EXAMINATION					
V	Ventilators, heart lung machine, hemodialysis, lithotripsy, infant incubators X-rays- principles of generation, uses of X-rays- diagnostic still picture, fluoroscopy, angiography, endoscopy, diathermy. Basic principle of computed tomography, magnetic resonance imaging system and nuclear medicine system – radiation therapy. Ultrasonic imaging system - introduction and basic principle.	8	20%		
VI	Instruments for clinical laboratory – test on blood cells – chemical tests - Electrical safety– physiological effects of electric current – shock hazards from electrical equipment – method of accident prevention, introduction to tele- medicine.	6	20%		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5) = 40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014