

## Text Book:

1. Robert Kruse, Data Structures and program design in C, Pearson Education Asia
2. Samanta,Classic Data Structures, PHI
3. Trembley \& Sorenson, An introduction to Data Structures with applications:, McGraw Hill

## References:

1. Donald E Knuth, The Art of Computer Programming, Vol.1: Fundamental Algorithms, Addison-Wesley, 1997.
2. Langsam, Augenstein \& Tanenbaum, Data Structures using C \& C++: Pearson, 1995
3. N.Wirth, Algorithms + Data Structures \& Programs:, PHI
4. Sahni \& Mehta, Fundamentals of Data Structures in C++: Horowitz, , Galgottia Pub.
5. Thomas Standish, Data structures in Java:, Pearson Education Asia

## Course Plan

| Module | Contents | Hours | Sem. <br> Exam <br> Marks |
| :---: | :--- | :---: | :---: |
| I | Linear Structures : Abstract data types(ADT), List ADT, Array based <br> implementation, Linked list implementation, Curser based linked <br> lists, Doubly linked lists, Applications of lists, Stack ADT, Queue <br> ADT, Circular queue implementation, Applications of stacks and <br> queues | 7 | $15 \%$ |


|  | Tree Structures : Need for nonlinear structures, Tree ADT, Tree <br> traversals, Left child right sibling data structures for general trees, <br> Binary tree ADT, Expression trees, Applications of trees, Binary <br> search tree ADT | 7 | $15 \%$ |
| :---: | :--- | :---: | :---: |
| III | Balanced Search Trees and Indexing : AVL trees, Binary heaps, B- <br> trees, Hashing, Separate chaining, Open addressing, Linear probing | 7 | $15 \%$ |
| IV | Graphs : Definitions, Topological sort, Breadth-first traversal, <br> Shortest-path algorithms, Minimum spanning tree, Prim's and <br> Kruskal's algorithms, Depth-first traversal, Bio connectivity, Euler <br> circuits, Applications of graphs | 7 | $15 \%$ |
| V | Algorithm Design: Greedy algorithm, Divide and conquer, Dynamic <br> programming, Backtracking, Branch and bound, Randomized <br> algorithms | 7 | $20 \%$ |
| VI | Algorithm Analysis : Asymptotic notations, Recurrences, NP <br> complete problems | 7 | $20 \%$ |

Part A: 8 compulsory questions.
One question from each module of Modules I - IV; and two each from Module V \& VI.
Student has to answer all questions. ( $8 \times 5$ ) $=40$
Part B: 3 questions uniformly covering Modules I \& II. Student has to answer any 2 from the 3 questions: $(2 \times 10)=20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III \& IV. Student has to answer any 2 from the 3 questions: $(2 \times 10)=20$. Each question can have maximum of 4 sub questions ( $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ ), if needed.

Part D: 3 questions uniformly covering Modules V \& VI. Student has to answer any 2 from the 3 questions: ( $2 \times 10$ ) $=20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

