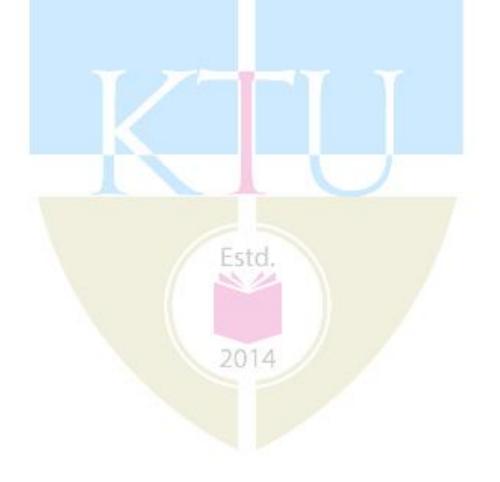
Course code	Course Name	L-T-P - Credits	Year of Introduction
EE334	Power Electronics and Drives Lab	0-0-3-1	2016
Prerequisite: E	EE305 Power electronics		
Course Object	ives		
• Impart	practical knowledge for the design an	d setup of different	power electronic
-	ers and its application for motor control	ZATANA	
	e the various power electronics converters	AC drives and DC driv	7es
	es/Experiments: (12 experiments are ma		
HARDWARE	EXPERIMENTS:	UTUTU	
1. Static ch	aracteristics of SCR termine latching current, holding current and s	static characteristics of SC	'P
	C firing circuits	static characteristics of SC	
	sign and set up R and RC firing circuits and o	bserve waveforms across	oad resistance and
SCR			
3. UJT Trig	gger circuit with Single phase controlled Recti	fier	
	sign & Set up UJT Triggering Circuit and obs		ad resistance, SCR,
-	nce and pulse transformer output.		
	chronised Triggering Circuits		
	sign and set-up line synchronized Ramp Trigg	er and Digital Trigger circ	cuits and observe
the wave			
	aracteristics of MOSFET of the characteristics of a Power MOSFET		
	age Controller using TRIAC		
	age Controller using TKIAC t a 1-phase AC voltage controller & observe w	aveforms across load resi	stance TRIAC and
	r for different firing angles	averorinis deross road resi	sunce, marke und
	hase fully Controlled SCR Bridge circuit		
0	up a 1-phase full converter with RL load & w	vith and without freewheel	ing diode
	hase half bridge/full bridge inverter using pow		C
Aim: De	sign and set up a single phase half-bridge/full-	-bridge inverter and observ	ve the waveforms
across lo	ad and firing pulses.		
v .	hase sine PWM inverter with LC filter		
	sign a <mark>nd set up a singl</mark> e phase sine PWM inve	rter with LC filter using m	nicrocontroller
	controlled DC motor	1	
	ntrol the speed of a DC motor using a step-do	wn chopper	
	ontrol of 3-phase induction motor	ng V/f control	
	ntrol the speed of 3-phase induction motor usi sed three phase PWM Inverter	lig v/l control	
	t up a 3-phase PWM Inverter with RL load and	d observe the waveforms	
	Loop Control of Single Phase Fully Controlled		
	sign and set-up a closed loop control circuit for		Rectifier such that
	the load voltage constant irrespective of the lo		
SIMULATION	EXPERIMENTS:		
14. Simulati	on of 1-phase fully-controlled and half-control	olled rectifier fed separatel	y excited DC
motor		_	
	nulate 1-phase fully-controlled and half-control		
	l, torque, armature current, armature voltage, s	source current waveforms	and find the THD
in source	e current and input power factor.		

- 15. Simulation of closed loop speed control of DC motor with different control schemes (PID, hysteresis current control, Fuzzy, ANFIS etc)
- 16. Simulation of open loop or closed loop speed control of 3-phase induction motor using V/f control and using sine PWM
- 17. Design and simulation of buck, boost and buck-boost converters
- 18. Simulation of Dual Converter 4 quadrant operation separately excited DC motor
- 19. Simulation of Regenerative Braking Bidirectional Power Transfer
- 20. Simulation of Switched Mode Rectifiers keeping load voltage constant irrespective of line and load variations closed loop circuit simulation


Minimum of EIGHT hardware experiments and FOUR simulation experiments from the above list are to be done

Expected outcome.

• Students will be able to design, setup and analyse various power electronic converters and apply these converters for the implementation of various motor control applications.

Text Book:

- 1) L. Umanand, Power Electronics Essentials & Applications, Wiley-India
- 2) Mohan, Undeland, Robbins, Power Electronics, Converters, Applications & Design, Wiley-India
- 3) Muhammad H. Rashid, Power Electronics Circuits, Devices and Applications, Pearson Education

