Course code	Course Name	L-T-P - Credits	Year of Introduction
EE333	Electrical Machines Lab II	0-0-3-1	2016
Prerequisite: EE202 Synchronous and induction machines			
Course Objectives			
• To give hands on experience in testing Alternators, Three phase and Single phase Induction			
Motors and induction generators			
List of Exercises/Experiments:			
1. Regulation of alternator by direct loading			
a) Determine the regulation of three phase alternator			
b) Plot the regulation vs load curve			
2. Regulation of three phase alternator by emf and mmf methods			
Objectives:			
Predetermine the regulation of alternator by emf and mmf method			
3. Regulation of alternator by Potier and ASA methods			
Objectives:			
a) Synchronize the alternator by dark lamp method			
b) Plot ZPF characteristics and determine armature reactance mmf and potter reactance			
d) Predetermine the regulation by ASA method			
4 Regulation of alternator by Potier method using inductive load			
Objectives:			
a) Plot ZPF characteristics using a variable inductive load			
b) Predetrmine the regulation by ZPF method			
5. Regulation of salient pole alternator using two reaction theory			
Objectives:			
a) Determine the direct and quadrature axis reactances.			
6. Active and reactive power control in grid connected alternators			
Objectives:			
a) Synchronize the alternator by bright lamp method			
b) Control the active and reactive power			
c) Plot the v-curve and inverted v curve for generator operation			
7. Study of induction motor starters			
Objectives:			
a) Start an induction motor using star delta starter and determine the starting current			
b) Piot the dynamic characteristic during INI starting			
Objectives			
a) Plot the variation of starting torque against rotor resistance in a three phase slip ring induction			
motor			
b) Find the external rotor resistance for which maximum starting torque is obtained.			
9. Speed control of slip ring induction motor by varying rotor resistance			
Objectives:			
a) Run the slip ring induction motor with constant load torque b) Plot the variation of speed against change in rotar resistance			
10 Load test on three phase squirrel cage induction motor			
Objectives:			
a) Start the motor using star delta starter			
b) Plot efficiency, line current and power factor against output power			
11. Load test on three slip ring induction motor			
Objectives:			
a) Start the	motor using auto transformer or rotor resistance starter		

b) Plot efficiency, line current and power factor against output power			
12. No load and block rotor test on three phase induction motor			
Objectives:			
a) Predetermination of performance characteristics from circle diagram			
b) Determination of equivalent circuit			
13. Performance characteristics of pole changing induction motor			
Objectives:			
a) Run the motor in two different pole combinations (example 4 pole and 8 pole)			
b) Determine the performance in the two cases and compare			
14. V curve of a synchronous motor			
Objectives:			
a) Run the motor in two different load conditions			
b) Determine v-curve for each load condition			
15. Performance characteristics of induction generator			
Objective:			
a) Run the induction generator with a dc motor prime mover.			
c) Plot the performance characteristics of the generator			
16. Equivalent circuit of single phase induction motor			
Objectives:			
a) Conduct no load and blocked tor test on the motor			
c) Find the equivalent circuit			
17. Electrical braking of slip ring induction motor			
Objectives:			
a) Dynamic braking			
b) Plot the speed variations at different conditions			
18. Separation of hysteresis loss in a three phase slip ring induction motor			
Objective:			
Determine the hysteresis loss in a slip ring induction motor			
Out of the above experiments, minimum twelve experiments should be done.			
Expected outcome:			
• After the successful completion of the course, the students will be able to test and validate DC			
generators DC motors and transformers			
Seneratorio, De motoro and transformero			
Text Book:			

- 1. Bimbra P. S., *Electrical Machinery*, 7/e, Khanna Publishers, 2011.
- 2. Theraja B. L., *A Textbook of Electrical Technology*, S. Chand & Company, New Delhi, 2008.

2014