Course co	de Course Name	L-T-P - Credits	Year of Introduction				
EE307	SIGNAL AND SYSTEMS	3-0-0-3	2016				
Prerequisite: Nil							
Course Objectives							
• To impart knowledge about the representation and properties of signal and systems and							
applications in engineering							
Syllabus:							
Classification of signals - Basic operations on signals- properties of systems- Convolution-							
Laplace transform-applications-Fourier series and Fourier transforms- properties- Discrete time							
systems-sampling- ZT-properties-applications- DFS-DFT-properties-Basics of Nonlinear systems							
Expected Outcome:							
After the completion of the course student will be able to:							
i. Represent various signals and systems							
ii. Analyse the continuous time system with Laplace transform							
iii. Represent and analyse signals using Fourier representation							
1V.	Analyse the discrete time system using ZT						
V.	Analyse the DT systems with DFS						
V1.	Acquire basic knowledge in nonlinear systems						
1 ext book	S: white S. & Maan D. V. Signals & Systems, John Will						
1. Ha	ykin S. & Veen B.V., Signals & Systems, John Wild	ey	a Tata MaG	row Lill			
2. Op	pelliterin A. V., Whisky A.S. & Nawad S.H., Signal	s and System	is, Tata McG				
J. 518	giais and Systems. I'J Nagratui- Tata McOraw IIII						
References:							
1. Bracewell R.N., Fourier Transform & Its Applications, McGraw Hill							
2. Farooq Husain, Signals and Systems, Umesh pub.							
3. Papoulis A., Fourier Integral & Its Applications, McGraw Hill							
4. Taylor F.H., Principles of Signals & Systems, McGraw Hill							
Course Diag							
				Som			
Modulo	Contents		Houng	Selli. Evom			
Mouule	Contents		nours	Lann Marks			
	Introduction to signals and systems - Classification	of signals -	7	Widi Ko			
	Basic operations on signals – Elementary signals –	of signals	,				
	Concept of system - Properties of systems	- Stability.					
I	inevitability- time invariance- Linearity -Causality	– Memory-					
	Convolution- Impulse response- Representation	on of LTI					
	systems - Differential equation representations of L	TI systems		15%			
	Laplace transform analysis of systems - Relation	between the	7				
	transfer function and differential equation -Ca	usality and					
11	stability - Inverse system - Determining the time	domain and					
	frequency response from poles and zeros			15%			
FIRST INTERNAL EXAMINATION							
III	Fourier representation of continuous time signa	lls –Fourier	7	15%			

	Series-Harmonic analysis of common signals-				
	Fourier transform - Existence – properties of FT- Energy				
	spectral density and power spectral density - Frequency				
	response of LTI systems -				
IV	Sampled data systems- Sampling process-sampling theorem-	7	15%		
	signal re construction- Zero order and First order hold circuits-				
	Difference equation representations of LTI systems -	NA.			
	Discrete form of special functions- Discrete convolution and	UVI.			
	its properties	AT			
SECOND INTERNAL EXAMINATION					
V	Z Transform - Region of convergence- Properties of the Z	7	20%		
	transform –				
	Inverse ZT-methods				
	Z-transfer function- Analysis of difference equation of LTI				
	systems – Basic idea on Stability and causality conditions-				
VI	Fourier representation of discrete time signals - Discrete	7	20%		
	Fourier series-properties- Frequency response of simple DT				
	systems				
	Basics of Non linear systems-types and properties				
	Introduction to random signals and processes (concepts only)				
END SEMESTER EXAM					

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.