Course No.	Course Name	L-T-P -Credits	Year of Introduction
EE203	ANALOG ELECTRONICS CIRCUITS	3-1-0-4	2016
Prerequisite : Nil	Course Objectives - To impart an in depth knowledge in electronic semiconductor devices \& circuits giving importance to the various aspects of design \& analysis.		
- To provide knowledge about different types amplifier \& oscillator circuits and their			
design.			
- To provide a thorough understanding of the			
functions.			

Expected outcome: Upon successful completion of the course the students will be able to

1. Design biasing scheme for transistor circuits
2. Model BJT and FET amplifier circuits
3. Choose a power amplifier with appropriate specifications for electronic circuit applications
4. Design \& analyse oscillator circuits using BJT
5. Choose Operational amplifier(OPAMP) for specific applications including waveform generation.
6. Design \& implement analog circuits using OPAMPs

Text Book:

1. Malvino A. and D. J. Bates, Electronic Principles 7/e, Tata McGraw Hill, 2010.
2. Boylestad R. L. and L. Nashelsky, Electronic Devices and Circuit Theory, 10/e, Pearson Education India, 2009.
3. Choudhury R., Linear Integrated Circuits, New Age International Publishers. 2008.

Data Book (Approved for use in the examination): Nil

References:

1. Floyd T. L., Fundamentals of Analog Circuits,, Pearson Education, 2012.
2. Robert T. Paynter and John Clemons, Paynter's Introductory electronic devices \& circuits, Prentice Hall Career \& Technology, New Jersey.
3. Bell D. A., Electronic Devices and Circuits, Prentice Hall of India, 2007.
4. Millman J. and C. C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems, Tata McGraw-Hill, 2010.
5. Streetman B. G. and S. Banerjee, Solid State Electronic Devices, Pearson Education Asia, 2006.
6. Gayakward R. A., Op-Amps and Linear Integrated Circuits, PHI Learning Pvt. Ltd., 2012.

Course Plan			
Module	Contents	Hours	Sem.ExamMarks
I	Diode Circuits: Diode clipping circuits - Single level and two level clippers - Clamping circuits - Design of Zener Voltage Regulators. Bipolar Junction Transistors : Review of BJT characteristics- Operating point of a BJT - Factors affecting stability of Q point and DC Biasing - Biasing circuits: fixed bias, collector to base bias, voltage division bias and self bias. (Derivation of stability factors for Voltage Divider Biasing only) -Bias compensation using diode and thermistor. Low frequency equivalent circuit of BJT. Common Emitter amplifier - AC Equivalent Circuit - Role of coupling and emitter bypass capacitors - h parameter model of BJT -Amplifier gains and impedances calculations using h equivalent circuit.	9 hours	15\%
II	Field Effect Transistors: Review of JFET and MOSFET construction, working and characteristics- Biasing a JFET and MOSFET using voltage divider bias-- CS and CD amplifiers - small signal models-FET as switch and voltage controlled resistance. Frequency response of Amplifiers: Miller's TheoremBJT Internal Capacitances at high frequency operationsHigh frequency analysis of CE Amplifier using hybrid Pi Model -Low Frequency Response of Common Emitter amplifier - CE High frequency response-Gain bandwidth product- -Low and High Frequency response of FET amplifiers	9 hours	15\%
FIRST INTERNAL EXAMINATION			
III	Multistage amplifiers : Direct, RC, transformer coupled amplifiers - Power amplifiers using BJT : Class A, Class B and Class AB and class C - Conversion efficiency and distortion in power amplifiers. Feedback Amplifiers- Effect of positive and negative feedbacks- Basic feedback topologies and their properties	8 hours	15\%
IV	Oscillators : Bark Hausen's criterion - RC oscillators (RC Phase shift oscillator and Wein Bridge oscillator) -LC oscillators (Hartley and Colpitt's)- Derivation of frequency of oscillation for the above mentioned oscillators- Crystal oscillator.	8 hours	15\%

	Operational Amplifiers: Review of Operational Amplifier basics - Analysis of fundamental differential amplifier- Properties of ideal and practical Op-Amp Gain, CMRR and Slew rate of IC 741 and LM 301- Drift and frequency compensation in OP Amps- Open loop and Closed loop Configurations-Concept of virtual short and its relation to negative feedback		
D SECOND INTERNAL EXAMINATION			
V	OP-AMP Circuits : Review of inverting and noninverting amplifier circuits- Summing and difference amplifiers, Differentiator and Integrator circuitsLogarithmic amplifier- Half Wave Precision rectifier Instrumentation amplifier. Comparators: Zero crossing and voltage level detectors, Schmitt trigger.	8hours	20\%
VI	Wave form generation using Op-Amps: Square, triangular and ramp generator circuits using Op-Amp Effect of slew rate on waveform generation. Timer 555 IC : Internal diagram of 555 IC- Astable and Monostable multivibrators using 555 IC. Oscillator circuits using Op-amps : RC Phase shift oscillator, Wein Bridge oscillator, LC Oscillators(Derivation not required) - Crystal oscillator.	8 hours	20\%
	END SEMESTER EXAM		

QUESTION PAPER PATTERN (End semester exam)

Part A: 8 questions.
One question from each module of Module I - IV; and two each from Module V \& VI. Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering modules I\&II
Student has to answer any 2 questions: $(2 \times 10)=20$
Part C: 3 questions uniformly covering modules III\&IV
Student has to answer any 2 questions: $(2 \times 10)=20$
Part D: 3 questions uniformly covering modules V\&VI
Student has to answer any 2 questions: $(2 \times 10)=20$
Note: Each question can have maximum of 4 sub questions, if needed.

