Course No	Course Name	L-T-P-Credits	Year of	Introduction		
EE202	Synchronous and Induction Machines	3-1-0-4		2016		
Prerequisite : NIL						
Course Objectives						
To g	give exposure to the students about the cor	ncepts of altern	nating curr	ent machines		
including	the Constructional details, principle of operat	tion and perform	nance analy	ysis.		
To le	earn the characteristics of induction machines	and to learn ho	w it can be	employed for		
various a	oplications.	ZATA	N.A.			
Syllabus ALADUU KALAM						
Alternators - basic principle, constructional details, armature windings, armature reaction,						
voltage regulation and determination of regulation by different methods; parallel operation of						
alternators and synchronization; Synchronous motors - principle, performance and power						
relations;	synchronous induction motors.	IIY				
Indu	ction motors – basic principle, rotating r	nagnetic field,	, construct	ional details,		
mechanical power and torque, performance analysis, starting methods, braking, testing,						
equivaler	t circuit and circle diagrams; single phase ind	uction motors.				
Indu	ction generator – principle of operation.					
Expected O	utcome					
Afte	the successful completion of this course, the	students will b	e able to			
1. i	dentify alternator types, and appreciate their p	erformance				
2. d	etermine the voltage regulation and analyse th	ne performance	of alternate	ors		
3. d	escribe the principle of operation of synchron	ous motor and	different ap	plications.		
4. d	escribe the principle of operation of 3-phase i	nduction motor	s and selec	t appropriate		
r	notor types for different applications.					
5. a	nalyse the performance of 3-phase induction 1	notors				
6. f	amiliarize with principle of operation and app	olication of 1 -p	hase induct	tion motors.		
T 4 D 1-						
1 Dim	P. S. Floatwigel Machinem, 7/2 Khonne P	which are 2011				
1. BIMORA P. S., <i>Electrical Machinery</i> , <i>I</i> /e, Khanna Publishers, 2011.						
Reference Books						
1. Sav	M. G. The Performance and Design of $A \in \mathcal{C}$	Machines, C.B.	S Publisher	s. New		
Delhi. 2002.						
2. Fitzgerald A. E., C. Kingsley and S. Umans, <i>Electric Machinery</i> , 6/e, McGraw Hill, 2003.						
3. Langsdorf M. N., <i>Theory of Alternating Current Machinery</i> , Tata McGraw Hill, 2001.						
4. Desł	4. Deshpande M. V., <i>Electrical Machines</i> , Prentice Hall India, New Delhi, 2011.					
5. Char	les I. Hubert, Electric Machines, Pearson, Nev	w Delhi 2007		1		
6. Theo	dore Wilde, Electrical Machines, Drives and	Power System,	Pearson Ec	1. Asia 2001.		
	Course Plai	n		Somostor		
Module	Contents		Hours	Semester Exam Marks		
A	Alternators - basic principle, constructional	features of				
s	alient pole type and cylindrical type	alternators.				
I	dvantages of stationary armature. turbo-altern	ator.	8 hours	15%		
	rmature winding types of armature win	ding_ single		10,0		
	war double lover full ritched and chart ritch	ang- single				
	ayer, double layer, full pitched and short pitch	ieu winding,				

	slot angle, pitch factor and distribution factor – numerical problems.			
	Effect of pitch factor on harmonics – advantages of short chorded winding, EMF Equation – numerical problems.			
	Harmonics in generated EMF – suppression of harmonics.			
Π	Performance of an alternator – Causes for voltage drop in alternators – armature resistance, armature leakage reactance – armature reaction, synchronous reactance, synchronous impedance, experimental determination – phasor diagram of a loaded alternator. Voltage regulation – EMF, MMF, ZPF and ASA methods –	9 hours	15%	
	EIDST INTEDNAL EVAMINATION			
	FIRST INTERNAL EXAMINATION			
III	Theory of salient pole machine – Blondel's two reaction theory – direct axis and quadrature axis synchronous reactances – phasor diagram and determination of X_d and X_q by slip test. Parallel operation of alternators – necessity of parallel operation of alternators, methods of synchronisation– dark lamp method and bright lamp method, synchroscope, Synchronising current, synchronising power, synchronising torque. Effects of changing excitation of alternators, load sharing of two alternators in parallel operation.	9 hours	15%	
IV	Synchronous motor – construction and principle of synchronous motor, methods of starting. Effects of excitation on armature current and power factor, v-curve and inverter v-curve, load angle, torque and power relationship, phasor diagram, losses and efficiency calculations. Three phase induction motor – constructional features, slip ring and cage types. Theory of induction motor with constant mutual flux, slip, phasor diagram, expression for mechanical power and torque, torque-slip characteristics, starting torque, full load and pull out torque, equivalent circuit.	9 hours	15%	
SECOND INTERNAL EXAMINATION				
V	Circle diagrams – tests on induction motors for determination of equivalent circuit and circle diagram.	10 hours	20%	

	Cogging, crawling and noise production in cage motors – remedial measures.			
	Double cage induction motor – principle, torque-slip curves.			
	Starting of induction motors – types of starters – DOL starter, autotransformer starter, star-delta starter, rotor			
	resistance starter – starting torque and starting current- numerical problems. Braking of induction motors – plugging, dynamic braking and regenerative braking (no numerical problems).			
	Speed control – stator voltage control, V/f control, rotor resistance control.			
VI	Induction generator – principle of operation, grid connected and self excited operation, comparison of induction generator with synchronous generators.Synchronous induction motor – principle of operation.Synchronous induction motor – principle of operation.10 hours20%Single-phase induction motor – double field revolving theory, equivalent circuit, torque slip curve.10 hours20%Types of single phase induction motor – split phase, capacitor start, capacitor start and run types.Principle of shaded pole motor – applications.10			
END SEMESTER EXAM				

QUESTION PAPER PATTERN (End semester exam)

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Estd.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Note: Each question can have maximum of 4 sub questions, if needed.