KTU Students

Course code	Course Name	L-T-P- Credits		ear of oduction
CS482	DATA STRUCTURES	3-0-0-3	2	016
Pre-requisit	e: A course on C or C++ in the B-Tech level with emphasis	s on pointers	and functi	ons.
To inTo in	ectives: troduce linear data structures such as stacks, queues and the troduce non-linear data structures such as trees, graphs and part various sorting, searching and hashing techniques and parison.	l their applic	ations.	
Basic Abstr	n to various programming methodologies, terminologies an act and Concrete Linear Data Structures, Non-linear Data Algorithms, Hashing.			
Expected	Dutcome: t will be able to:-			
 i. comp perfo ii. choo scena iii. repre algor iv. illust 	pare different programming methodologies and define as rmance of algorithms se appropriate data structures like arrays, linked list, stac	ks and queu	es to for	practical
C, 2/	: ard F. Gilberg and Behrouz A. Forouzan, Data Structures: e, Cengage Learning, 2005. anta D., Classic Data Structures, Prentice Hall India, 2/e, 20		ode Appro	ach with
Publi 2. Horw (Indi 3. Hugg 4. Lipso 5. Mart 6. Peter 7. Trem McG	A. V., J. E. Hopcroft and J. D. Ullman, Data Structure cation, 1983. vitz E., S. Sahni and S. Anderson, Fundamentals of Data Structure a), 2008. ges J. K. and J. I. Michtm, A Structured Approach to Progra whuts S., Theory and Problems of Data Structures, Schaum's in Barrett, Clifford Wagner, And Unix: Tools For Software Brass, Advanced Data Structures, Cambridge University P blay J. P. and P. G. Sorenson, Introduction to Data Stru raw Hill, 1995. n N., Algorithms + Data Structures = Programs, Prentice Ha	tructures in C mming, PHI, s Series, 1986 e Design, Joh ress, 2008 ctures with	C, Univers , 1987. 6. n Wiley, 2	ity Press 2008
	COURSE PLAN			
Module	Contents		Hours	End Sem. Exam Marks

Ι	Introduction to programming methodologies – structured approach, stepwise refinement techniques, programming style, documentation – analysis of algorithms: frequency count, definition of O notation, asymptotic analysis of simple algorithms. Recursive and iterative algorithms.		15%
II	Abstract and Concrete Data Structures- Basic data structures – Arrays, Linked lists:- singly linked list, doubly linked list, Circular linked list, operations on linked list, linked list with header nodes, applications of linked list: polynomials,.		15%
	FIRST INTERNAL EXAMINATION		
III	Implementation of Stacks and Queues using arrays and linked lists, Applications. Trees: - m-ary Tree, Binary Trees – level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive only), applications.		15%
IV	Binary search tree – creation, insertion and deletion and search operations, applications. Heaps- Min-max heaps, Graphs – representation of graphs, BFS and DFS (analysis not required) applications.		15%
	SECOND INTERNAL EXAMINATION		
V	Minimum Spanning Trees – Prim's and Kruskal algorithms. Shortest path algorithms – Djikstra and Warshall algorithms Sorting techniques – Bubble sort, Selection Sort, Insertion sort, Merge sort, Quick sort, Searching algorithms (Performance comparison expected. Detailed analysis not required)	07	20%
VI	Linear and Binary search. (Performance comparison expected. Detailed analysis not required) Hash Tables – Hashing functions – Mid square, division, folding, digit analysis, collusion resolution and Overflow handling techniques.	07	20%

Question Paper Pattern (End semester exam)

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 - All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/programming/numerical questions in all possible combinations of question choices.

-51

