Course	Course Name	L-T-P-	Yea	r of
code	Course Name (Credits	Introd	uction
CH484	FUEL CELL TECHNOLOGY3	8-0-0-3	20	16
Prerequisi	te : Nil			
Course Ob	jectives			
• To e	expose the students to the fundamental knowledge re	equired in	the develo	opment
of f	lel cell technology.			
Syllabus	A DI A DIDITI IZA	T A	N 4	
Introduction	n to Fuel Cells and Fuel Cell Technology, General	Thermod	ynamics, 1	Reaction
Kinetics, C	harge and Mass Transport, Overview of Fuel Cell	Types, S	Stack Desi	gn, Fuel
Cell Charac	terization, Hydrogen Economy.	(A	
Expected (Jutcome	1		
At the end	of the course the students will be able to:	omica flu	id maahar	vice and
	when the fundamentals of electrochemistry, thermodyna	ainies, nu		nes, and
	and mass transfer, appropriate for the design of fev	view of C	omponent	s of fuel
	s and rule cell systems.	tunos of f		atoma
2. And 2	Tyze the rule cell technology and compare different t	fuel cell	now national	sterns.
5. Cal	visteme	iuer cell	power pla	111
	bysicillis.	w global	anarau	norio
4. Del	inquish the expectences of hydrogen as a fuel and ar	w global	ton in the	enario.
5. Distort	inguish the expectances of hydrogen as a fuer and en	lergy vec		ontext
Deference	Packas	-		
References	BOOKS:	ach Uud	rogan ag	o futuro
I. All	reas Zutter, Andreas Borgschutte, Louis Schapta	Woinho	ingen as	a future
	tomogne D: Srinivosen S. J. Dower Sources 2001 14	1, we mile	2008. 260	
2. COS 2. Error	a Barbir, DEM Fuel Calley Theory and Practice, Elec	02, 242-2	.09)5	
J. Frai	Coll Handback 7the Edn. EC & C Tachnical Sami	evier, 200	2004	
4. Fue 5 Uor	deski M E Alternative Evels: The Euture of Hud	rogen Th	2004	nt Droce.
	ueski, M. F. Alternative Fuels. The Future of figu	iogen, 11		III F1688.
6 Kor	desch K: Simeder G. Eucl Cells and Their Applica	tions VC	ับ. 1006	
0. K01 7 Lar	ninie I: Dicks A Fuel Cell Systems Explained	Iohn W	$\frac{11}{10}$	one I td.
7. Lai Chi	shester 1000	. JOIII **	iciy & S	ons Lu.
8 Rva	n P. O'Havre Suk-Won Cha Whitney Colella &	Fritz B	Printz E	uel Cell
o. Kya Fun	damentals John Wiley & Sons Inc. New Jersey 20	06	1 1 1 1 1 L Z, 1	
9 Vie	stich W Gasteiger H Δ Lamm Δ (Eds):	Handbool	k of Fue	1 Cells-
Fun	damentals Technology and Applications John Wie		ns I td· N	Y 2003
Vol	s1-A			1, 2003,
V 01	Course Plan			
				Sem
Module	Contents		Hours	exam
1.104444				marks
	Introduction: Fuel Cell, Brief History of fue	el cells.		
	Types of Fuel Cells, Working of a PEM fuel Ce	ell, Fuel	7	
Ι	Cell and conventional processes - comparison, Er	nergy &		15%
	power relations, units, Application scenarios, Adv	antages		

For more visit www.ktunotes.in

	General Thermodynamics: Enthalpy-Heat potential of		
	fuel, Gibb's free energy-Work potential of fuel,		
	Reversible voltage - NERNST Equation, Voltage and P,		
	T and concentration dependence – examples, Faraday's		
	Laws, Efficiency: thermodynamic, voltage and fuel.		
	Reaction Kinetics : Electrochemical reaction		
II	fundamentals, electrode kinetics, Charge transfer and		
	activations energy, Exchange current density - slow and		
	fast reactions, Potential and equilibrium - galvanic	17/	15%
	potential, Reaction rate and potential - Butler Volmer	VIV1	1370
	equation & Tafel equation, Electrocatalysts and reaction	AT	
	kinetics - typical exchange current densities, Electrode	AL	
	design basics	h. And	
	FIRST INTERNAL EXAMINATION		
	Charge and Mass Transport: Charge transport		
	resistances, voltage losses, Ionic and electronic		
III	conductivites, Ionic conduction in different FC		
	electrolytes: Aquesous, polymeric and ceramic, Diffusive	7	200/
	transport & voltage loss: Limiting current density,	/	20%
	Nerstian and kenetic effect, Convective transport: flow		
	channels, gas diffusion / porous layer, gas velocity,		
	pressure, Flow channel configurations		
	Overview of Fuel Cell Types: PAFC, PEMFC, AFC,		
	MCFC, SOFC. Major Cell Components, Material	7	200/
	Properties, Processes and Operating Conditions of	/	20%
	PEMFC.		
	SECOND INTERNAL EXAMINATION		
	Stack Design: Sizing of a Fuel Cell Stack, Stack		
	Configuration, Uniform distribution of Reactants, Heat	•	
V	removal, Stack Clamping	ngc	150/
v	Fuel Cell Diagnostics: Polarization Curve, Current	01	13%
	Interrupt, AC Impedance Spectroscopy, Pressure drop as		
	a diagnostic tool.		
	Fuel Cell System Design: Hydrogen-Oxygen Systems,		
VI	Hydrogen-Air Systems, Fuel Cell Systems with Fuel	1	
	Processor, System Efficiency	7	1.50/
	Fuel Cells and Hydrogen Economy: Hydrogen Energy	/	15%
	Systems, Hydrogen Energy Technologies, Transition to		
	Hydrogen Economy		
		1	

For more visit www.ktunotes.in

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x20= 40 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

Estd

(2 x 15 = 30 Marks)

For more visit www.ktunotes.in