Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE100	ENGINEERING MECHANICS	3-1-0-4	2016

Course Objectives

- 1. To apply the principles of mechanics to practical engineering problems.
- 2. To identify appropriate structural system for studying a given problem and isolate it from its environment.
- 3. To develop simple mathematical model for engineering problems and carry out static analysis.
- 4. To carry out kinematic and kinetic analyses for particles and systems of particles.

Syllabus

Statics: Fundamental concepts and laws of mechanics; Force systems; Principle of moments; Resultant of force and couple systems; Equilibrium of rigid body; Free body diagram; Equilibrium of a rigid body in three dimension; Support reactions; Properties of surfaces and solids - Centroid, Moment of inertia, Polar moment of inertia, Mass moment of inertia, Product of inertia and Principal moment of inertia; Theorems of Pappus – Guldinus; Friction; Principle of virtual work.

Dynamics: Rectangular and cylindrical coordinate system; Combined motion of rotation and translation; Newton's second law in rectilinear translation; D' Alembert's principle; Mechanical vibration; Simple harmonic motion; Spring-mass model.

Expected outcome

- 1. Students will be able to apply and demonstrate the concepts of mechanics to practical engineering problems.
- 2. Students will be able to determine the properties of planes and solids.
- 3. Students will be able to apply fundamental concepts of dynamics to practical problems.

Text Books:

- Shames, I. H., Engineering Mechanics Statics and Dynamics, Pearson Prentice
- Timoshenko, S. & Young D. H., Engineering Mechanics, McGraw Hill

References Books:

- Babu, J., Engineering Mechanics, Pearson Prentice Hall
- Beer and Johnson, Vector Mechanics for Engineers Statics and Dynamics, Tata McGraw Hill Publishing Company Limited
- Benjamin J., Engineering Mechanics, Pentex Book Publishers and Distributors
- Bhavikkatti, S. S., Engineering Mechanics, New Age International Publishers
- Hibbeler, R. C., Engineering Mechanics: Statics and Dynamics. Pearson Prentice Hall
- Kumar, K. L., Engineering Mechanics, Tata McGraw Hill Publishing Company Limited
- Merriam J. L. and Kraige L. G., Engineering Mechanics Vol. I and II, John Wiley
- Rajasekaran S. and Sankarasubramanian, G., Engineering Mechanics, Vikas Publishing House Private Limited
- Tayal, A. K., Engineering Mechanics- Statics and Dynamics, Umesh Publications

Course Plan				
Module	Contents	Hours	Sem. Exam Marks	
Ι	Statics: Fundamental concepts and laws of mechanics – Rigid body –	2		
	Principle of transmissibility of forces	2		
	Coplanar force systems - Moment of a force – Principle of moments	2 4 15%		
	Resultant of force and couple system			
	Equilibrium of rigid body – Free body diagram – Conditions of			
	equilibrium in two dimensions – Two force and three force members.	3		
II	Types of supports – Problems involving point loads and uniformly distributed loads only.	5		
	Force systems in space – Degrees of freedom – Free body diagram – Equations of equilibrium – Simple resultant and Equilibrium problems.	4	13%	
FIRST INTERNAL EXAM				
III	Properties of planar surfaces – Centroid and second moment of area (Derivations not required) - Parallel and perpendicular axis theorem – Centroid and Moment of Inertia of composite area.	3		
	Polar Moment of Inertia – Radius of gyration – Mass moment of inertia of cylinder and thin disc (No derivations required).	2	15%	
	Product of inertia – Principal Moment of Inertia (conceptual level).	3		
	Theorems of Pappus and Guldinus.	1		
IV	Friction – Characteristics of dry friction – Problems involving friction of ladder, wedges and connected bodies.	6	150/	
	Definition of work and virtual work – Principle of virtual work for a system of connection bodies – Problems on determinate beams only.	4	13%	
SECOND INTERNAL EXAM				
V	Dynamics: Rectangular and Cylindrical co-ordinate system	1		
	Combined motion of rotation and translation – Concept of instantaneous centre – Motion of connecting rod of piston and crank of a reciprocating pump.	4	4 20%	
	Rectilinear translation – Newton's second law – D'Alembert's Principle – Application to connected bodies (Problems on motion of lift only).	4		
VI	Mechanical vibrations – Free and forced vibration - Degree of freedom.	1		
	Simple harmonic motion – Spring-mass model – Period – Stiffness – Frequency – Simple numerical problems of single degree of freedom.	7	20%	
END SEWIESTEK EAAWI				