Course code	Course Name	L-T-P - C	Year of	
			Introduction	
AU486	Noise, Vibration and Harshness	3-0-0-3	2016	
Proroquisito · NII				

Prerequisite: NIL

Course Objectives

- To impart the basics of noise, vibration, sources of vibration and noise in automobiles
- To study the effect of noise and vibration on human beings and nature.
- To introduce the methods of measurement of noise and vibration.
- To provide knowhow on various methods to reduce the vibration and noise

Syllabus

Fundamentals of Acoustics and Noise, Vibration - Effects of Noise, Blast, Vibration, and Shock on People- Introduction to Transportation Noise and Vibration Sources - Engine noise - Reduction of noise and vibrations - Noise and Vibration Transducers - Noise and Vibration Measurements - Vibration Data Analysis

Expected outcome.

The students will

- i. understand the sources, effects, prediction, control techniques, measurement techniques of noise, vibration pertain to an automobile
- ii. know about reduction of noise and vibration from an automobile.

Text Books:

- 1. Clarence W. de Silva, "Vibration Monitoring, Testing, and Instrumentation", CRC Press, 2007
- 2. Colin H Hansen "Understanding Active Noise Cancellation", Spon Press, London 2003
- 3. Kewal Pujara "Vibrations and Noise for Engineers, Dhanpat Rai & Sons, 1992.
- 4. Singiresu S.Rao, "Mechanical Vibrations" Pearson Education, ISBM -81-297-0179-2004.

References:

- 1. Allan G. Piersol ,Thomas L. Paez "Harris' Shock and Vibration Handbook", McGraw-Hill , New Delhi, 2010
- 2. Bernard Challen and Rodica Baranescu "Diesel Engine Refrence Book" Second edition SAE International ISBN 0-7680-0403-9 1999.
- 3. David A.Bies and Colin H.Hansen "Engineering Noise Control: Theory and Practice "Spon Press, London, 2009
- 4. Julian Happian-Smith "An Introduction to Modern Vehicle Design"- Butterworth-Heinemann, ISBN 0750-5044-3 2004
- 5. Matthew Harrison "Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles", Elsevier Butterworth-Heinemann, Burlington, 2004

Course Plan Module Contents Hours End Sem. Exam Marks I Fundamentals of Acoustics and Noise, Vibration: Introduction, classification of vibration and noises: Theory of Sound—Predictions and Measurement, Sound Sources, Sound Propagation in the Atmosphere, Sound Radiation from Structures and Their Response to 7 15%

For more visit www.ktunotes.in

1					
	Sound, General Introduction to Vibration, free and forced vibration, undamped and damped vibration, linear and non linear vibration,				
	response of damped and undamped systems under harmonic force,				
	analysis of single degree and two degree of freedom systems				
	Effects of Noise, Blast, Vibration, and Shock on People: General				
	Introduction to Noise and Vibration Effects on People and				
	Hearing Conservation, Noise Exposure, Noise-Induced Annoyance,				
II	Effects of Infrasound, Low-Frequency Noise, and Ultrasound on	7	15%		
111	People, Effects of Intense Noise on People and Hearing Loss,	/	1370		
	Effects of Vibration on People, Effects of Mechanical Shock on				
	People, Rating Measures, Descriptors, Criteria, and Procedures for				
	Determining Human Response to Noise.				
FIRST INTERNAL EXAMINATION					
	Introduction to Transportation Noise and Vibration Sources, Noise				
	Characteristics of engines, engine overall noise levels, assessment of	_	4		
III	combustion noise, assessment of mechanical noise, engine radiated	7	15%		
	noise, intake and exhaust noise, engine accessory contributed noise,				
	transmission noise, aerodynamic noise, tyre noise, brake noise Reduction of noise and vibrations I: Vibration isolation, tuned				
	absorbers, untuned viscous dampers, damping treatments, application				
IV	dynamic forces generated by IC engines, engine isolation, crank shaft	7	15%		
	damping, modal analysis of the mass elastic model shock absorbers.				
SECOND INTERNAL EXAMINATION					
	Reduction of noise and vibrations: noise dose level, legislation,				
	measurement and analysis of noise, measurement environment,				
	equipment, frequency analysis, tracking analysis, sound quality				
V	analysis. Methods for control of engine noise, combustion noise,	8	20%		
	mechanical noise, predictive analysis, palliative treatments and	can			
	enclosures, automotive noise control principles, sound in enclosures,				
	sound energy absorption, sound transmission through barriers				
VI	Noise and Vibration Transducers, Analysis Equipment, Signal				
	Processing, and Measuring Techniques: General Introduction to				
	Noise and Vibration Transducers, Measuring Equipment,				
	Measurements, Signal Acquisition and Processing, Acoustical				
	Transducer Principles and Types of Microphones, Vibration Transducer Principles and Types of Vibration Transducers, Sound				
	Level Meters, Noise Dosimeters, Analyzers and Signal Generators,	8	20%		
	Equipment for Data Acquisition, Noise and Vibration				
	Measurements, Determination of Sound Power Level and Emission				
	Sound Pressure Level, Sound Intensity Measurements, Noise and				
	Vibration Data Analysis, Calibration of Measurement Microphones,				
	Calibration of Shock and Vibration Transducers.				
	END SEMESTER EXAM				

For more visit www.ktunotes.in

Question Paper Pattern

Maximum marks: 100 Duration: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI.Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

For more visit www.ktunotes.in