Course	Credits	Year of Introduction 2016	
AO482		20	16
	nisite : Nil		
	Objectives To introduce the basic concepts of aerospace engineering and the current develop	ments in t	ha fiald
Syllabu		ments m	ne neia.
History	of aeronautics – helicopters – aircraft propulsion – aircraft configurations	- Atmos	phere
Text Bo	ospheric flight – space flight – aircraft structures and materials – rockets.		
	Anderson, J.D., "Introduction to Flight", McGraw-Hill, 1995.		
Refere			
	Kermode, A.C., "Flight without Formulae", McGraw-Hill, 1997.		
	Syllabus &Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
_	Historical Developments in Aeronautical Activities: Early air vehicles: Balloons, Biplanes and Monoplanes	3	15%
I	Helicopters; Developments in aerodynamics, aircraft materials, aircraft structures & aircraft propulsion.	3	
	Aircraft Configurations: Different types of flight vehicles and their classifications;	2	
II	Components of fixed wing airplane and their functions;	2	
	Airfoils, wings and other shapes.	2	15%
	FIRST INTERNAL EXAMINATION		•
III	Principles of Atmospheric Flight: Physical properties and structure of the atmosphere:	C3///	15%
	The Standard Atmosphere, Temperature, Pressure and Altitude relationships, Mach number	2	
	Evolution of theory of lift and drag, Maneuvers, Concepts of stability and control.	3	
IV	Introduction to Space Flight: Introduction to basic concepts, the upper atmosphere	3	15%
	Space vehicle trajectories-some basic concepts, Kepler's Laws of planetary motion.	3	
	SECOND INTERNAL EXAMINATION		
V	Introduction to airplane structures and materials: General types of construction, Monocoque, semi-monocoque.	3	20%
	Typical wing and fuselage structure. Metallic and non-metallic materials	2	
	Use of aluminium alloy, titanium, stainless steel and composite materials.	2	
VI	Power plants used in airplanes : Basic ideas about piston, turboprop and jet engines.	3	20%

For more visit www.ktunotes.in

Comparative merits, Principles of operation of rocket, types of rocket,	kets 3			
and typical applications,				
Exploration into space.	2			
END SEMESTER EXAM				

Question Paper Pattern

Maximum marks: 100 Exam duration: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Estd.

2014